INMUNIZACIÓN CON PÉPTIDOS NEURALES MODIFICADOS COMO ESTRATEGIA TERAPÉUTICA EN LESIÓN DE MÉDULA ESPINAL

Contenido principal del artículo

Andrea Ibarra García
Raúl Silva García
Antonio Ibarra

Resumen

El uso de péptidos neurales para el tratamiento de lesiones de médula espinal.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Ibarra García, A., Silva García, R., & Ibarra, A. (2023). INMUNIZACIÓN CON PÉPTIDOS NEURALES MODIFICADOS COMO ESTRATEGIA TERAPÉUTICA EN LESIÓN DE MÉDULA ESPINAL. +Ciencia, (31), 31–40. Recuperado a partir de https://publicaciones.anahuac.mx/index.php/masciencia/article/view/1558
Sección
Ciencia por alumnos

Citas

Referencias

Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 2012;

: 365-372.

Yuying Chen, MD National Spinal Cord Injury Model

Systems Database. National Spinal Cord Injury Statistical Center. 1970. https://www.nscisc.uab.edu/ (consultado el 11 de 2022).

Censo de Población y Vivienda 2020. Información de

México, Discapacidad. INEGI. 2020. https://cuentame.inegi.org.mx/poblacion/discapacidad.aspx (consultado el 28 de noviembre de 2022).

Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C,

Curt A et al. Traumatic spinal cord injury. Nat Rev Dis

Primers 2017; 3: 17018.

Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS et al. Recent update on basic mechanisms of

spinal cord injury. Neurosurg Rev 2020; 43: 425-441.

Hauben E, Nevo U, Yoles E, Moalem G, Agranov E,

Mor F et al. Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 2000;

: 286-287.

Rodríguez-Barrera R, Flores-Romero A, García E,

Fernández-Presas AM, Incontri-Abraham D, NavarroTorres L et al. Immunization with neural-derived peptides increases neurogenesis in rats with chronic spinal

cord injury. CNS Neurosci Ther 2020; 26: 650-658.

Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB et al. Acute spinal cord injury, part I:

pathophysiologic mechanisms. Clin Neuropharmacol

; 24: 254-264.

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: An overview of pathophysiology,

models and acute injury mechanisms. Front Neurol

; 10: 282.

Venkatesh K, Ghosh SK, Mullick M, Manivasagam G,

Sen D. Spinal cord injury: pathophysiology, treatment

strategies, associated challenges, and future implications. Cell Tissue Res 2019; 377: 125-151.

Tator CH. Update on the pathophysiology and pathology

of acute spinal cord injury. Brain Pathol 1995; 5: 407-413.

Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in

shock, inflammation, and ischemia/reperfusion injury.

Pharmacol Rev 2001; 53: 135-159.

Hall ED, Andrus PK, Yonkers PA, Smith SL, Zhang JR,

Taylor BM et al. Generation and detection of hydroxyl

radical following experimental head injury. Ann N Y

Acad Sci 1994; 738: 15-24.

Farooque M, Hillered L, Holtz A, Olsson Y. Effects of

moderate hypothermia on extracellular lactic acid and

amino acids after severe compression injury of rat spinal cord. J Neurotrauma 1997; 14: 63-69.

Goldshmit Y, Banyas E, Bens N, Yakovchuk A, Ruban

A. Blood glutamate scavengers and exercises as an

effective neuroprotective treatment in mice with spinal

cord injury. J Neurosurg Spine 2020; 33: 692-704.

Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord

injury: a review with an emphasis on the implications

for white matter degeneration. J Neurotrauma 2004;

: 754-774.

Springer JE, Azbill RD, Knapp PE. Activation of the

caspase-3 apoptotic cascade in traumatic spinal cord

injury. Nat Med 1999; 5: 943-946.

Dusart I, Schwab ME. Secondary cell death and the

inflammatory reaction after dorsal hemisection of the

rat spinal cord. Eur J Neurosci 1994; 6: 712-724.

Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. Quantitative analysis of cellular

inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 2010; 133: 433-447.

Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L. Acute inflammatory response in spinal cord

following impact injury. Exp Neurol 1998; 151: 77-88.

Wu F, Ding X-Y, Li X-H, Gong M-J, An J-Q, Lai J-H et

al. Cellular inflammatory response of the spleen after

acute spinal cord injury in rat. Inflammation 2019; 42:

-1640.

Guizar-Sahagun G, Grijalva I, Madrazo I, Franco-Bourland R, Salgado H, Ibarra A et al. Development of posttraumatic cysts in the spinal cord of rats-subjected to

severe spinal cord contusion. Surg Neurol 1994; 41:

-249.

Popovich PG, Wei P, Stokes BT. Cellular inflammatory

response after spinal cord injury in Sprague-Dawley

and Lewis rats. J Comp Neurol 1997; 377: 443-464.

Gensel JC, Zhang B. Macrophage activation and its

role in repair and pathology after spinal cord injury.

Brain Res 2015; 1619: 1-11.

Ibarra A, Correa D, Willms K, Merchant MT, GuizarSahagún G, Grijalva I et al. Effects of cyclosporin-A

on immune response, tissue protection and motor

function of rats subjected to spinal cord injury. Brain

Res 2003; 979: 165-178.

Butovsky O, Hauben E, Schwartz M. Morphological

aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7--2 (CD86) and prevention of cyst formation. FASEB J 2001; 15: 1065–1067.

Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258: 78-90.

Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P,

Cohen IR et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 2000; 15: 331-345.

Barouch R, Schwartz M. Autoreactive T cells induce

neurotrophin production by immune and neural cells

in injured rat optic nerve: implications for protective

autoimmunity. FASEB J 2002; 16: 1304-1306.

Ibarra A, García E, Flores N, Martiñón S, Reyes R,

Campos MG et al. Immunization with neural-derived

antigens inhibits lipid peroxidation after spinal cord injury. Neurosci Lett 2010; 476: 62-65.

Rodríguez-Barrera R, Fernández-Presas AM, García

E, Flores-Romero A, Martiñón S, González-Puertos

VY et al. Immunization with a neural-derived peptide

protects the spinal cord from apoptosis after traumatic

injury. Biomed Res Int 2013; 2013: 827517.

Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD,

Yezierski RP. Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 1998; 18:

-3260.

Raposo C, Graubardt N, Cohen M, Eitan C, London

A, Berkutzki T et al. CNS repair requires both effector

and regulatory T cells with distinct temporal and spatial profiles. J Neurosci 2014; 34: 10141-10155.

Lee K-H, Yun S-J, Nam KN, Gho YS, Lee EH. Activation of microglial cells by ceruloplasmin. Brain Res

; 1171: 1-8.

Li L, Lu J, Tay SSW, Moochhala SM, He BP. The

function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain

Res 2007; 1159: 8-17.

Tang Y, Le W. Differential roles of M1 and M2 microglia

in neurodegenerative diseases. Mol Neurobiol 2016;

: 1181-1194.

Li J, Yu S, Lu X, Cui K, Tang X, Xu Y et al. The phase

changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res 2021; 70: 183-192.

Shaked I, Porat Z, Gersner R, Kipnis J, Schwartz M.

Early activation of microglia as antigen-presenting

cells correlates with T cell-mediated protection and

repair of the injured central nervous system. J Neuroimmunol 2004; 146: 84-93.

Franciosi S, Choi HB, Kim SU, McLarnon JG. IL-8

enhancement of amyloid-beta (Abeta 1-42)-induced

expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol 2005; 159: 66-74.

Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X et al.

Microenvironment imbalance of spinal cord injury. Cell

Transplant 2018; 27: 853-866.

Vanegas H, Schaible HG. Prostaglandins and

cyclooxygenases [correction of cycloxygenases] in

the spinal cord. Prog Neurobiol 2001; 64: 327-363.

López-Vales R, García-Alías G, Guzmán-Lenis MS,

Forés J, Casas C, Navarro X et al. Effects of COX-2

and iNOS inhibitors alone or in combination with olfactory ensheathing cell grafts after spinal cord injury.

Spine (Phila Pa 1976) 2006; 31: 1100-1106.

Kroner A, Rosas Almanza J. Role of microglia in spinal cord injury. Neurosci Lett 2019; 709: 134370.

Schwartz M. Sell Memorial Lecture. Helping the body

to cure itself: immune modulation by therapeutic vaccination for spinal cord injury. J Spinal Cord Med 2003;

Suppl 1: S6-10.

Schwartz M, Kipnis J. Self and non-self discrimination

is needed for the existence rather than deletion of autoimmunity: the role of regulatory T cells in protective

autoimmunity. Cell Mol Life Sci 2004; 61: 2285-2289.

Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X et al. Protective autoimmunity:

interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators: IFNα-activated microglia benefits neurons. J Neurochem

; 92: 997-1009.

Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE,

Pluchino S et al. Microglia activated by IL-4 or IFNgamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol

Cell Neurosci 2006; 31: 149-160.

Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G,

Agranov E et al. Passive or active immunization with

myelin basic protein promotes recovery from spinal

cord contusion. J Neurosci 2000; 20: 6421-6430.

Kipnis J, Yoles E, Schori H, Hauben E, Shaked I,

Schwartz M. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 2001; 21: 4564-4571.

Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A et al. Protective autoimmunity is a physiological

response to CNS trauma. J Neurosci 2001; 21: 3740-

Nel AE, Slaughter N. T-cell activation through the antigen receptor. Part 2: role of signaling cascades in Tcell differentiation, anergy, immune senescence, and

development of immunotherapy. J Allergy Clin Immunol 2002; 109: 901-915.

Hauben E, Schwartz M. Therapeutic vaccination

for spinal cord injury: helping the body to cure itself.

Trends Pharmacol Sci 2003; 24: 7-12.

Gaur A, Boehme SA, Chalmers D, Crowe PD, Pahuja

A, Ling N et al. Amelioration of relapsing experimental

autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J Neuroimmunol 1997; 74: 149-158.

Ibarra A, Hauben E, Butovsky O, Schwartz M. The therapeutic window after spinal cord injury can accommodate T cell-based vaccination and methylprednisolone in rats. Eur J Neurosci 2004; 19: 2984-2990.

Martiñon S, García E, Flores N, Gonzalez I, Ortega T,

Buenrostro M et al. Vaccination with a neural-derived

peptide plus administration of glutathione improves

the performance of paraplegic rats: Improvement of

protective autoimmunity. Eur J Neurosci 2007; 26:

-412.

Hauben E, Gothilf A, Cohen A, Butovsky O, Nevo U,

Smirnov I et al. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes

functional recovery from spinal cord injury. J Neurosci

; 23: 8808-8819.

García E, Silva-García R, Mestre H, Flores N, Martiñón

S, Calderón-Aranda ES et al. Immunization with A91

peptide or copolymer-1 reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury. J Neurosci Res 2012;

: 656-663.

Martiñón S, García-Vences E, Toscano-Tejeida D,

Flores-Romero A, Rodriguez-Barrera R, Ferrusquia M

et al. Long-term production of BDNF and NT-3 induced by A91-immunization after spinal cord injury. BMC

Neurosci 2016; 17: 42.

García E, Silva-García R, Flores-Romero A, BlancasEspinoza L, Rodríguez-Barrera R, Ibarra A. The severity of spinal cord injury determines the inflammatory gene expression pattern after immunization with

neural-derived peptides. J Mol Neurosci 2018; 65:

-195.

Rodríguez-Barrera R, Flores-Romero A, FernándezPresas AM, García-Vences E, Silva-García R, Konigsberg M et al. Immunization with neural derived

peptides plus scar removal induces a permissive microenvironment, and improves locomotor recovery after chronic spinal cord injury. BMC Neurosci 2017; 18.

https://doi.org/10.1186/s12868-016-0331-2

Martiñón S, García E, Gutierrez-Ospina G, Mestre H,

Ibarra A. Development of protective autoimmunity by

immunization with a neural-derived peptide is ineffective in severe spinal cord injury. PLoS One 2012; 7:

e32027.

Santoscoy C, Ríos C, Franco-Bourland RE, Hong E,

Bravo G, Rojas G et al. Lipid peroxidation by nitric oxide supplements after spinal cord injury: effect of antioxidants in rats. Neurosci Lett 2002; 330: 94-98.

Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A,

Madrazo I, Franco-Bourland RE. Glutathione monoethyl ester improves functional recovery, enhances

neuron survival, and stabilizes spinal cord blood flow

after spinal cord injury in rats. Neuroscience 2005;

: 639-649.

Dröge W, Schulze-Osthoff K, Mihm S, Galter D,

Schenk H, Eck HP et al. Functions of glutathione and

glutathione disulfide in immunology and immunopathology. FASEB J 1994; 8: 1131-1138.

García E, Rodríguez-Barrera R, Buzoianu-Anguiano V,

Flores-Romero A, Malagón-Axotla E, Guerrero-Godinez M et al. Use of a combination strategy to improve

neuroprotection and neuroregeneration in a rat model

of acute spinal cord injury. Neural Regen Res 2019;

: 1060-1068.

Parra-Villamar D, Blancas-Espinoza L, Garcia-Vences

E, Herrera-García J, Flores-Romero A, Toscano-Zapien A et al. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury.

Neural Regen Res 2021