Association between gut microbiota and obesity. A review of the evidence

Palabras clave: obesidad, microbiota intestinal, disbiosis, sobrepeso, metabolismo

Resumen

La obesidad es un problema de salud a nivel mundial que se asocia en forma causal con factores genéticos y nutricionales. Sin embargo, se propone que otros factores, como la microbiota intestinal, participan en su desarrollo. Los microorganismos vivos en el organismo son conocidos como microbiota y en el ser humano esta se divide en cuatro grupos principales, Firmicutes, Bacteroidetes, Proteobacteria y Actinobacteria. Tradicionalmente se pensaba que el organismo se encontraba en un entorno libre de bacterias durante el desarrollo embrionario y su colonización ocurría al nacer, pero la evidencia apunta al inicio de la colonización en el útero. De forma natural, la microbiota intestinal exhibe varias funciones metabólicas y varios factores pueden modificar la proporción de sus familias de bacterias. Tales modificaciones pueden conducir a un estado de disbiosis que puede provocar el desarrollo de sobrepeso y obesidad de forma secundaria y, en el futuro, enfermedades metabólicas. Sin embargo, no toda la evidencia es consistente con esta hipótesis. Aunque el trasplante fecal produce una disminución significativa en el peso corporal del paciente y el consumo de alimentos, además de la cirugía bariátrica, al modificar la composición de la microbiota, también favorece la aparición de especies que disminuyen la inflamación de bajo grado característica de la obesidad. Por lo tanto, esta revisión tiene como objetivo analizar la literatura disponible sobre la capacidad de la microbiota intestinal para alterar la homeostasis y aumentar la probabilidad de desarrollar sobrepeso y obesidad.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. World Health Organization [Internet]. Obesity and overweight 2020. c2021 [citado 2021 Feb 2]. Available in: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
2. Secretaría de Salud México [Internet]. Informe sobre la Salud de los Mexicanos 2015. c2021 [citado 2021 Feb 20]. Available in: https://www.gob.mx/cms/uploads/attachment/file/64176/INFORME_LA_SALUD_DE_LOS MEXICANOS_2015_S.pdf
3. Shamah-Levy T, Vielma-Orozco E, Heredia-Hernandez O, Romero-Martinez M, Mojica-Cuevas J, Cuevas-Nasu, et al. Encuesta Nacional de Salud y Nutrición 2018-19: Resultados Nacionales. Cuernavaca, México: Instituto Nacional de Salud Publica, 2020 Available in: https://www.insp.mx/produccion-editorial/novedades-editoriales/ensanut-2018-nacionales
4. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013; 2013:291546. https://doi.org/10.1155/2013/291546
5. Duranti S, Ferrario C, van Sinderen D, Ventura M, Turroni F. Obesity and microbiota: An example of an intricate relationship. Genes Nutr. 2017;12:18. https://doi.org/10.1186/s12263-017-0566-2
6. Catalano PM, Shankar K. Obesity and pregnancy: Mechanisms of short term and long-term adverse consequences for mother and child. BMJ. 2017;356:j1. https://doi.org/10.1136/bmj.j1
7. Martínez, K., Pierre, J., Chang, E. The Gut Microbiota. Gastroenterol Clin North Ame. 2016;45(4):601-614. https://doi.org/10.1016/j.gtc.2016.07.001
8. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330:1357-1363. https://doi.org/10.1136/bmj.38470.670903.E0
9. Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534-538. https://doi.org/10.1093/ajcn/87.3.534
10. Thompson-Chagoyán OC, Maldonado-Lozano J, Gil A. The gut microbiota in the child and the influence of the diet on its composition. Alim Nutri Salud. 2004;11:37-48.
11. Mai V, Draganov PV. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol. 2009;15:81-85. https://doi.org/10.3748/wjg.15.81
12. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by caesarean section. Curr Microbiol. 2015;51:270–274. https://doi.org/10.1007/s00284-005-0020-3
13. DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, et al. Microbial Prevalence, Diversity and Abundance in Amniotic Fluid During Preterm Labor: A Molecular and Culture-Based Investigation. PLoS One. 2008;3:e3056. https://doi.org/10.1371/journal.pone.0003056
14. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra65. https://doi.org/10.1126/scitranslmed.3008599
15. Thompson-Chagoyán OC. Obesidad infantil. In: Ruy-Díaz Reynoso JA, Barragán JR, Gutiérrez OR. Endonutrición. Apoyo Nutricio. 2ª Ed. El Manual Moderno México; 2013. P. 231-250.
16. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–15723. https://doi.org/10.1073/pnas.0407076101
17. Reinhardt C, Reigstad CS, Bäckhed F. Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr. 2009;48(3):249-56. https://doi.org/10.1097/mpg.0b013e318183187c
18. Wang X, Buhimschi CS, Temoin S, Bhandari V, Han YW, Buhimschi IA. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS ONE. 2013;8:e56131. https://doi.org/10.1371/journal.pone.0056131
19. Steel JH, Malatos S, Kennea N, Edwards AD, Miles L, et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res. 2005;57:404–411. https://doi.org/10.1203/01.PDR.0000153869.96337.90
20. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. https://doi.org/10.1038/srep23129
21. Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, et al. (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5:4. https://doi.org/10.1186/s40168-016-0213-y
22. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177. https://doi.org/10.1371/journal.pbio.0050177
23. Ajslev TA, Andersen CS, Gamborg M, Sørensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond). 2011;35:522–529. https://doi.org/10.1038/ijo.2011.27.
24. Galley JD, Bailey M, Kamp Dush, C, Schoppe-Sullivan S, Christian LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One. 2014;9.e113026. https://doi.org/10.1371/journal.pone.0113026
25. Stuebe AM, Forman MR, Michels KB. Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter. Int J Obes (Lond). 2009;33:743–752. https://doi.org/10.1038/ijo.2009.101
26. Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88:894–899. https://doi.org/10.1093/ajcn/88.4.894
27. Arumugam M, Raes J, Pelletier E, Le-Paslier D, Yamada T, et al. (2011) Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. https://doi.org/10.1038/nature09944
28. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–11075. https://doi.org/10.1073/pnas.0504978102
29. Riva A, Borgo F, Lassandro C, Verduci E, Morace G, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol. 2017;19:95–105. https://doi.org/10.1111/1462-2920.13463
30. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, et al. Mucin bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1:254-268. https://doi.org/10.4161/gmic.1.4.12778
31. Méndez-Salazar EO, Ortiz-López MG, Granados-Silvestre MLÁ, Palacios-González B, Menjivar M. Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Front Microbiol. 2018;9:2494. https://doi.org/10.3389/fmicb.2018.02494
32. Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (Lond). 2013;37:1460–1466. https://doi.org/10.1038/ijo.2013.20
33. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010;103:335–338. https://doi.org/10.1017/S0007114509992182
34. Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS One. 2016;11:e0154090. http://doi.org/10.1371/journal.pone.0154090
35. Ignacio A, Fernandes MR, Rodrigues VA, Groppo FC, Cardoso AL, et al. Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect. 2016;22:258.e1-8. https://doi.org/10.1016/j.cmi.2015.10.031
36. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell 2014;159:789-799. https://doi:10.1016/j.cell.2014.09.053
37. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190-195. https://doi.org/10.1038/oby.2009.167
38. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15-25. https://doi.org/10.1016/j.cmet.2004.12.003
39. Rosado EL, Monteiro JB, Chaia V, do Lago MF. Effect of leptin in the treatment of obesity and influences of diet in the secretion and action of hormone. Nutr Hosp. 2006;21:686-693.
40. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, et al. Decreased cerebrospinal fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet. 1996;348:159-161. https://doi.org/10.1016/s0140-6736(96)03173-x
41. Almanza-Pérez JC, Blancas-Flores G, García-Macedo R, Alarcón-Aguilar FJ, Cruz M. Leptin and its relationship with obesity and type 2 diabetes mellitus. Gac Med Mex. 2008;144: 535-542.
42. Isolauri E. Microbiota and obesity. Nestle Nutr Inst Workshop Ser. 2017;88:95-105. https://doi.org/10.1159/000455217
43. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016; 534:213–217. https://doi.org/10.1038/nature18309
44. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23:270–299. https://doi.org/10.1017/S0954422410000168
45. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. https://doi.org/10.1126/science.1208344
46. Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, et al. Rethinking “enterotypes”. Cell Host Microbe. 2014;16:433–437. https://doi.org/10.1016/j.chom.2014.09.013
47. Org E, Parks BW, Joo JW, Emert B, Schwartzman W, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25:1558–1569. https://doi.org/10.1101/gr.194118.115
48. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–3. https://doi.org/10.1038/nature05414
49. Zhang CH, Zhang MH, Wang SY, Han R, Cao Y, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–241. https://doi.org/10.1038/ismej.2009.112
50. Viparelli F, Cassese A, Doti N, Paturzo F, Marasco D, et al. Targeting of PED/PEA-15 molecular interaction with phospholipase D1 enhances insulin sensitivity in skeletal muscle cells. J Biol Chem. 2008;283:21769–21778. https://doi.org/10.1074/jbc.M803771200
51. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, et al. Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066-9071. https://doi.org/10.1073/pnas.1219451110
52. Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep. 2013;15:337. https://doi.org/10.1007/s11894-013-0337-1
53. Ianiro G, Eusebi LH, Black CJ, Gasbarrini A, Cammarota G, Ford AC. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther; 2019;50:240-8. https://doi.org/10.1111/apt.15330
54. Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones (Athens). 2017;16:223-34. http://dx.doi.org/10.1007/BF03401517
55. Walker AW, Parkhill J. Microbiology. Fighting obesity with bacteria. Science. 2013;341:1069-1070. https://doi.org/10.1126/science.1243787
56. Alang N, Kelly CR. (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2: ofv004. https://doi.org/10.1093/ofid/ofv004
57. de Clercq NC, Frissen MN, Davids M, Groen AK, Nieuwdorp M. Weight gain after fecal microbiota transplantation in a patient with recurrent underweight following clinical recovery from anorexia nervosa. Psychother Psychosom. 2019;88:58–60. https://doi.org/10.1159/000495044
58. Woodworth MH, Carpentieri C, Sitchenko KL, Kraft CS. Challenges in fecal donor selection and screening for fecal microbiota transplantation: A review. Gut Microbes. 2017;8:225-237. https://doi.org/10.1080/19490976.2017.1286006
59. Zhou Y, Xu H, Huang H, Li Y, Chen H, et al. Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders? Biomed Res Int. 2019;2019:3469754. https://doi.org/10.1155/2019/3469754
60. Peat CM, Kleiman SC, Bulik CM, Carroll IM. The Intestinal Microbiome in Bariatric Surgery Patients. Eur Eat Disord Rev. 2015;23:496–503. https://doi.org/10.1002/erv.2400
61. Patrone V, Vajana E, Minuti A, Callegari ML, Federico A, et al. Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass. Front Microbiol. 2016;7:200 https://doi.org/10.3389/fmicb.2016.00200
62. Ilhan ZE, DiBaise JK, Isern NG, Hoyt DW, Marcus AK, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11:2047-2058. https://doi.org/10.1038/ismej.2017.71
63. Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. (2017) Bile Acids and Bariatric Surgery. Mol Aspects Med. 2017;56:75-89. https://doi.org/10.1016/j.mam.2017.04.001
64. Mulla CH, Middelbeek RJW, Patti ME. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann NY Acad Sci. 2018;1411:53–64. https://doi.org/10.1111/nyas.13409
65. Wagner NRF, Zaparolli MR, Cruz MRR, Schieferdecker MEM, Campos ACL. Postoperative changes in intestinal microbiota and use of probiotics in Roux-en-Y gastric bypass and sleeve vertical gastrectomy. An integrative review. Arq Bras Cir Dig. 2018; 31:e1400. https://doi.org/10.1590/0102-672020180001e1400
66. Seridi L, Leo GC, Dohm GL, Pories WJ, Lenhard J. Time course metabolome of Roux-en-Y gastric bypass confirms correlation between leptin, body weight and the microbiome. PLoS One. 2018;13:e0198156. https://doi.org/10.1371/journal.pone.0198156
67. Togo AH, Valero R, Delerce J, Raoult D, Million M. “Anaerotruncus massiliensis,” a new species identified from human stool from an obese patient after bariatric surgery. New Microbes New Infect. 2016;14:56-57. https://doi.org/10.1016/j.nmni.2016.07.015
68. Bessis S, Amadou T, Dubourg G, Raoult D, Fournier PE. “Bariatricus massiliensis” as a new bacterial species from human gut microbiota. New Microbes New Infect. 2016;12:54–55. https://doi.org/10.1016/j.nmni.2016.04.003
69. Togo AH, Khelaifia S, Bittar F, Maraninchi M, Raoult D, Million M. “Eisenbergiella massiliensis”, a new species isolated from human stool collected after bariatric surgery. New Microbes New Infect. 2016;13:15–16. http://doi.org/10.1016/j.nmni.2016.05.015
70. Togo AH, Maraninchi M, Bittar F, Raoult D, Million M. "Ruminococcus phoceensis," a new species identified from human stool from an obese patient before bariatric surgery. New Microbes New Infect. 2016;14:67-68. http://doi.org/10.1016/j.nmni.2016.09.004
Publicado
2021-08-06
Cómo citar
Lascurain, L., Jaquez, J., Thompson-Alfaro, S., López-Alarcón, M., & Thompson-Chagoyán, O. C. (2021). Association between gut microbiota and obesity. A review of the evidence. Proceedings of Scientific Research Universidad Anáhuac, 1(2), 70-80. https://doi.org/https://doi.org/10.36105/psrua.2021v1n2.07
Sección
Review Articles