Dendritic cells in the treatment of HIV, cancer and systemic lupus erythematosus

Autores/as

  • Lenin Leonardo Bravo-Martínez Universidad Anáhuac México, Facultad de Ciencias de la Salud, Estado de México, México. https://orcid.org/0009-0007-6817-9181
  • Moisés Talavera-Paulin Universidad Anáhuac México, Facultad de Ciencias de la Salud, Estado de México, México.

DOI:

https://doi.org/10.36105/psrua.2024v4n7.03

Palabras clave:

cáncer, células dendríticas, enfermedades del sistema inmune, lupus eritematoso sistémico, vacunas, VIH

Resumen

Las vacunas han sido una de las mejores armas en contra de enfermedades que han afectado a la humanidad durante años, su desarrollo ha permitido la erradicación de importantes epidemias como la viruela en 1980. Anteriormente, se hacía uso de microorganismos completos o partes de ellos para combatir una enfermedad. Hoy en día las vacunas usan de componentes más sofisticados como material genético y/o vectores virales. Sin embargo, aunque la tecnología en el desarrollo de vacunas ha aumentado considerablemente en los últimos años, aún existen limitaciones para el tratamiento de enfermedades causadas por virus como el VIH y enfermedades complejas difíciles de abordar como el lupus eritematoso sistémico y el cáncer. Este artículo describe brevemente una visión general de tales enfermedades y la tendencia actual de dirigir la respuesta inmunitaria mediante la vacunación de células, no de personas. Se destaca la importancia de las células dendríticas y las nuevas tecnologías surgidas en los últimos años.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX metrics

Citas

Meyer H, Ehmann R, Smith GL. Smallpox in the Post-Eradication Era. Viruses. 2020; 12(2):138. https://doi.org/10.3390/v12020138 DOI: https://doi.org/10.3390/v12020138

Thèves C, Crubézy E, Biagini P. History of Smallpox and Its Spread in Human Populations. Microbiol Spectr. 2016; 4(4). https://doi.org/10.1128/microbiolspec.PoH-0004-2014 DOI: https://doi.org/10.1128/microbiolspec.PoH-0004-2014

Organización Mundial de la Salud. Vaccines and Immunization. 2024

Alcamí J, Munné JJ, Muñoz-Fernández M, Esteban M. Present situation in the development of a preventive HIV vaccines. Elsevier. 2005; 23(S2): 5-14. https://doi.org/10.1016/S0210-5705(09)71003-9 DOI: https://doi.org/10.1016/S0213-005X(05)75157-0

Hillis A, Germain J, Hope V, McVeigh J, Van Hout MC. Pre-exposure prophylaxis (PrEP) for HIV prevention among men who have sex with men (MSM): A scoping review of PrEP service delivery and programming. AIDS behavior. 2020; 24(11):3056-3070. https://doi.org/10.1007/s10461-020-02855-9 DOI: https://doi.org/10.1007/s10461-020-02855-9

Heendeniya A, Bogoch II. HIV prevention with post-exposure pocket prophylaxis. Lancet Public Health. 2019; 4(10): E494. https://doi.org/10.1016/S2468-2667(19)30152-5 DOI: https://doi.org/10.1016/S2468-2667(19)30152-5

Bandera A, Gori A, Clerici M, Sironi M. Phylogenies in ART: HIV reservoirs, HIV latency and drug resistance. Curr Opin Pharmacol. 2019; 48:24-32. https://doi.org/10.1016/j.coph.2019.03.003 DOI: https://doi.org/10.1016/j.coph.2019.03.003

Wearne N, Davidson B, Blockman M, Swart A, Jones ESW. HIV, drugs, and the kidney. Drugs in Context. 2020; 9:2019-11-1. https://doi.org/10.7573/dic.2019-11-1 DOI: https://doi.org/10.7573/dic.2019-11-1

Marusyk A, Polyak K. Cancer. Cancer cell phenotypes, in fifty shades of grey. Science. 2013; 339(6119): 528-9. https://doi.org/10.1126/science.1234415 DOI: https://doi.org/10.1126/science.1234415

Midthun L, Shaheen S, Deisch J, Senthil M, Tsai J, Hsueh CT. Concomitant KRAS and BRAF mutations in colorectal cancer. J Gastrointest Oncol. 2019; 10(3): 577-581. https://doi.org/10.21037/jgo.2019.01.10 DOI: https://doi.org/10.21037/jgo.2019.01.10

Ruiz-Irastorza G, Bertsias G. Treatment of systemic lupus erythematosus in the 21st century: new drugs and new perspectives on old drugs. Rheumatology (Oxford). 2020; 59(Suppl5): v69-v81. doi: https://doi.org/10.1093/rheumatology/keaa403 DOI: https://doi.org/10.1093/rheumatology/keaa403

Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 2020; 180: 114147. https://doi.org/10.1016/j.bcp.2020.114147 DOI: https://doi.org/10.1016/j.bcp.2020.114147

Leung AKC. “Variolation” and Vaccination in Late Imperial China. Springer. 2011; 557-63. https://doi.org/10.1007/978-1-4419-1339-5_2 DOI: https://doi.org/10.1007/978-1-4419-1339-5_2

Carrillo-Esper R, Moncada-Sánchez A, Domínguez-Sandoval Z, Meyer-Talón M et al. Historical and Bioethical Considerations for Rabies and Smallpox Vaccines. Med Int Méx. March 2016; 32(2):232-243.

Schwartz M. The Pasteurian contribution to the history of vaccines. C R Biol. September 13, 2022; 345(3):93-107. https://doi.org/10.5802/CRBIOL.83 DOI: https://doi.org/10.5802/crbiol.83

Finco O, Rappuoli R. Designing Vaccines for 21st Century Society. Front Immunol. 2014; 5. https://doi.org/10.3389/fimmu.2014.00012 DOI: https://doi.org/10.3389/fimmu.2014.00012

Heger E, Schuetz A, Vasan S. HIV vaccine efficacy trials: RV144 and beyond. Adv Exp Med Biol. 2018; 1075: 3-30. https://doi.org/10.1007/978-981-13-0484-2_1 DOI: https://doi.org/10.1007/978-981-13-0484-2_1

Cao H, Mani I, Vincent R, Mugerwa R, Mugyenyi P, Kanki P, et al. Cellular immunity to human immunodeficiency virus type 1 (HIV-1) clades: relevance to HIV-1 vaccine trials in Uganda. J Infect Dis. 2000; 182(5): 1350-6. https://doi.org/10.1086/315868 DOI: https://doi.org/10.1086/315868

Vaccari M, Poonam P, Franchini G. Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev Vaccines. 2010; 9(9): 997-1005. https://doi.org/10.1586/erv.10.104 DOI: https://doi.org/10.1586/erv.10.104

Kane MA. Global implementation of human papillomavirus (HPV) vaccine: lessons from hepatitis B vaccine. Gynecol Oncol. 2010; 117(2 Suppl): S32-5. https://doi.org/10.1016/j.ygyno.2010.01.029 DOI: https://doi.org/10.1016/j.ygyno.2010.01.029

American Society of Clinical Oncology “What is immunotherapy?” Cancer.Net, 2022.

Liu S, Jiang Q, Zhao X, et al. A vaccine based on DNA nanodevices for cancer immunotherapy. Nat Mater. 2021; 20(3): 421-430. https://doi.org/10.1038/s41563-020-0793-6 DOI: https://doi.org/10.1038/s41563-020-0793-6

Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (London). 2019; 14(5): 627-648. https://doi.org/10.2217/nnm-2018-0147 DOI: https://doi.org/10.2217/nnm-2018-0147

Morse MA, Gwin III WR, Mitchell DA. Vaccine Therapies for Cancer: Then and Now. Targeted Oncology. 2021; 16(2): 121–152. https://doi.org/10.1007/s11523-020-00788-w DOI: https://doi.org/10.1007/s11523-020-00788-w

Barile-Fabris LA, Fragoso-Loyo H, Wojdyla D, Quintana R, Pons-Estel GJ, Catoggio LJ, et al., Factors associated with neuropsychiatric involvement in Latin American patients with systemic lupus erythematosus. Lupus. 2021; 30(9): 1481-1491. https://doi.org/10.1177/09612033211020364 DOI: https://doi.org/10.1177/09612033211020364

Miranda-Hernández D, Cruz-Reyes C, Monsebaiz-Mora C, Gómez-Bañuelos E, Ángeles U, Jara LJ, et al., Active haematological manifestations of systemic lupus erythematosus lupus are associated with a high rate of in-hospital mortality. Lupus. 2017; 26(6): 640-645. https://doi.org/10.1177/0961203316672926 DOI: https://doi.org/10.1177/0961203316672926

Fernando MM, Isenberg DA. How to monitor SLE in routine clinical practice. Ann Rheum Dis. 2005; 64(4): 524-7. https://doi.org/10.1136/ard.2003.015248 DOI: https://doi.org/10.1136/ard.2003.015248

Xibillé-Friedmann D, Pérez-Rodríguez M, Carrillo-Vázquez S, Álvarez-Hernández E, Aceves FJ, Ocampo-Torres MC, et al., Clinical practice guidelines for the treatment of systemic lupus erythematosus by the Mexican College of Rheumatology. Reumatol Clin (Engl Ed). 2019; 15(1): 3-20. https://doi.org/10.1016/J.Reuma.2018.03.011 DOI: https://doi.org/10.1016/j.reumae.2018.03.003

Izmirly PM, Kim MY, Samanovic M, Fernandez-Ruiz R, Ohana S, Deonaraine KK, et al., Assessment of immune response and disease status in patients with systemic lupus erythematosus after SARS-CoV-2 vaccination. Rheumatol arthritis. 2022; 74(2): 284-294. https://doi.org/10.1002/Art.41937 DOI: https://doi.org/10.1002/art.41937

David P, Shoenfeld Y. Safety of human papillomavirus vaccine in patients with systemic lupus erythematosus. Lupus. 2020; 29(11): 1485-1486. https://doi.org/10.1177/0961203320946375 DOI: https://doi.org/10.1177/0961203320946375

Sim JJL, Lim CC. Influenza Vaccination in Systemic Lupus Erythematosus: Efficacy, Effectiveness, Safety, Utilization, and Barriers. Am J Med. 2022; 135(3): 286-296.e9. https://doi.org/10.1016/j.amjmed.2021.08.038 DOI: https://doi.org/10.1016/j.amjmed.2021.08.038

Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011; 12(6): 509-517. https://doi.org/10.1038/ni.2039 DOI: https://doi.org/10.1038/ni.2039

Owen JA, Punt J, Stranford SA, Jones PP. Kuby Immunology. Seventh edition. Mexico City: McGraw-Hill, 2014. 51p.

Macri C, Pang ES, Patton T, O’Keeffe M. Dendritic cell subsets. Semin Cell Dev Biol. 2018; 84: 11-21. https://doi.org/10.1016/j.semcdb.2017.12.009 DOI: https://doi.org/10.1016/j.semcdb.2017.12.009

Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol. 2021; 18(11): 2461-2471. https://doi.org/10.1038/s41423-021-00726-4 DOI: https://doi.org/10.1038/s41423-021-00726-4

Surenaud M, Montes M, Lindestam Arlehamn CS, et al. Anti-HIV potency of T-cell responses elicited by therapeutic dendritic cell vaccination. PLoS Pathog. 2019; 15(9): E1008011. https://doi.org/10.1371/journal.ppat.1008011 DOI: https://doi.org/10.1371/journal.ppat.1008011

Korber B, Fischer W. T-cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother. 2020; 16(3): 713-722. https://doi.org/10.1080/21645515.2019.1666957 DOI: https://doi.org/10.1080/21645515.2019.1666957

Nagai K, Adachi T, Harada H, Eguchi S, Sugiyama H, Miyazaki Y. Dendritic Cell-Based Immunotherapy Pulsed With Wilms Tumor 1 Peptide and Mucin 1 as an Adjuvant Therapy for Pancreatic Ductal Adenocarcinoma After Curative Resection: A Phase I/IIa Clinical Trial. Anticancer Res 2020; 40(10): 5765–76. https://doi.org/10.21873/anticanres.14593 DOI: https://doi.org/10.21873/anticanres.14593

Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, et al., Tumor-Associated Antigen-Based Personalized Dendritic Cell Vaccine in Solid Tumor Patients. Cancer Immunol Immunother 2020; 69(7): 1375–87. https://doi.org/10.1007/s00262-020-02496-w DOI: https://doi.org/10.1007/s00262-020-02496-w

Filin IY, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Recent Advances in Experimental Dendritic Cell Vaccines for Cancer. Front Oncol. 2021; 23(11): 730824. https://doi.org/10.3389/fonc.2021.730824 DOI: https://doi.org/10.3389/fonc.2021.730824

Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest. 2022; 51(8): 2133-2158. https://doi.org/10.1080/08820139.2022.2109486 DOI: https://doi.org/10.1080/08820139.2022.2109486

Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Dendritic cell antitumor vaccination in a preparation and booster approach. Nat Rev Droga Discov. 2020; 19(9): 635-652. https://doi.org/10.1038/s41573-020-0074-8 DOI: https://doi.org/10.1038/s41573-020-0074-8

Castiello L, Aricò E, D’Agostino G, Santodonato L, Belardelli F. In situ vaccination by direct inoculation of dendritic cells: the coming of age of an old idea?. Immunol Front. 2019; 10: 2303. https://doi.org/10.3389/fimmu.2019.02303 DOI: https://doi.org/10.3389/fimmu.2019.02303

Kushwah R, Wu J, Oliver JR, Jiang G, Zhang J, Siminovitch KA, et al. Apoptotic DC uptake converts immature DC into tolerogenic DC inducing Foxp3+Treg differentiation. Eur J Immunol 2010; 40(4): 1022–35. https://doi.org/10.1002/eji.200939782 DOI: https://doi.org/10.1002/eji.200939782

Van der Aar AM, Sibiryak DS, Bakdash G, van Capel TM, van der Kleij HP, Opstelten DJ, et al. Vitamin D3 targets epidermal and dermal dendritic cells for the induction of distinct regulatory T cells. J Allergy Clin Immunol 2011; 127(6): 1532–40.e7. https://doi.org/10.1016/j.jaci.2011.01.068 DOI: https://doi.org/10.1016/j.jaci.2011.01.068

Seitz HM, Matsushima GK. Dendritic cells in systemic lupus erythematosus. Int Rev Immunol. 2010; 29(2):184-209. https://doi.org/10.3109/08830181003602507 DOI: https://doi.org/10.3109/08830181003602507

Švajger U, Rožman P. Induction of tolerogenic dendritic cells by endogenous biomolecules: an update. Immunol Front. 2018; 9: 2482. https://doi.org/10.3389/fimmu.2018.02482 DOI: https://doi.org/10.3389/fimmu.2018.02482

UNISIDA. Fact Sheet - Latest statistics on the state of the AIDS epidemic. 2022. Available at: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf

INEGI. Statistics on World HIV/AIDS Day. 2022.

Blassel L, Zhukova A, Villabona-Arenas CJ, Atkins KE, Hué S, Gascuel O. Drug resistance mutations in HIV: new approaches and bioinformatics challenges. Curr Opin Virol. 2021; 51: 56-64. https://doi.org/10.1016/j.coviro.2021.09.009 DOI: https://doi.org/10.1016/j.coviro.2021.09.009

GLOBOCAN. Cancer today. 2022.

INEGI. Statistics on World Cancer Day. 2022.

IMSS. Timely Detection and Treatment Improves Quality of Life for People with Lupus. 2019

Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, et al. Differentiation of type 1 (Tr1) T regulatory cells by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 2010; 116(6): 935–44. https://doi.org/10.1182/blood-2009-07-234872 DOI: https://doi.org/10.1182/blood-2009-07-234872

Matzinger P. The Danger Model: A Renewed Sense of Self. Science. 2002; 296(5566): 301-5. https://doi.org/10.1126/science.1071059 DOI: https://doi.org/10.1126/science.1071059

Descargas

Publicado

2024-06-06

Cómo citar

Bravo-Martínez, L. L. ., & Talavera-Paulin, M. . (2024). Dendritic cells in the treatment of HIV, cancer and systemic lupus erythematosus . Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare, 4(7), 23–33. https://doi.org/10.36105/psrua.2024v4n7.03