Orthostatic response in patients with type 2 diabetes mellitus evaluated through acceleration photoplethysmogram

Autores/as

DOI:

https://doi.org/10.36105/psrua.2021v1n2.01

Palabras clave:

ortostatismo, índices de la segunda derivada del fotopletismograma, diabetes tipo 2, rigidez arterial

Resumen

Introducción: Una de las complicaciones de la diabetes mellitus es la disfunción circulatoria arterial. El coeficiente 30:15 es uno de los índices ortostáticos que se emplean para diagnosticar alteraciones circulatorias en diabéticos con evolución prolongada. Por otra parte, se emplean índices de la segunda derivada del fotopletismograma (SDPPG) o fotopletismograma por aceleración para caracterizar cambios patológicos de la función arterial. Objetivo: Comparar la respuesta cardiovascular a la bipedestación activa de sujetos sanos versus diabéticos tipo 2 mediante los índices de la SDPPG. Métodos: Se tomaron registros fotopletismográficosdigitales (PPG) en sujetos sanos (n = 15, edad ± DE, 44.6 ± 7.2 años) y sujetos diabéticos tipo 2 (n = 15, edad ± DE, 48.3 ± 7.9 años). . Se calcularon los coeficientes 30:15, los índices b/a, d/a y SDPPG-IE en cada participante, basados en los componentes de la onda del SDPPG y se compararon en el período basal y a los segundos 15 y 30. Resultados: Los coeficientes 30:15 de ambos grupos no mostraron diferencias significativas. Respecto a los índices SDPPG, no se observaron diferencias significativas entre los dos grupos en el periodo basal. Sin embargo, d/a disminuyó y SDPPG-IE aumentó, ambos en el latido 30 y de manera significativa después del ortostatismo activo en el grupo de sujetos no diabéticos. Los valores de los índices SDPPG en el grupo de diabéticos tipo 2 no mostraron cambios significativos. Conclusión: Los resultados sugieren que los índices de la SDPPG pueden ser usados para detectar de manera temprana disfunciones vasculares en diabéticos tipo 2.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX metrics

Citas

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53. http://doi: 10.2337/diacare.27.5.1047
2. Yun JS, Park YM, Cha SA, Ahn YB, Ko SH. Progression of cardiovascular autonomic neuropathy and cardiovascular disease in type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):109. http://doi: 10.1186/s12933-018-0752-6
3. Breder ISS, Sposito AC. Cardiovascular autonomic neuropathy in type 2 diabetic patients. Rev Assoc Med Bras. (1992). 2019;65(1):56-60. http://doi: 10.1590/1806-9282.65.1.56
4. Lin K, Wei L, Huang Z, Zeng Q. Combination of Ewing test, heart rate variability, and heart rate turbulence analysis for early diagnosis of diabetic cardiac autonomic neuropathy. Medicine (Baltimore). 2017;96(45):e8296. http://doi: 10.1097/MD.0000000000008296
5. Spallone V, Bellavere F, Scionti L, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21:69-78. http://doi: 10.1016/j.numecd.2010.07.005
6. Borst C, Wieling W, van Brederode JF, Hond A, de Rijk LG, Dunning AJ. Mechanisms of initial heart rate response to postural change. Am J Physiol.1982;243(5):H676-81. http://doi: 10.1152/ajpheart.1982.243.5.H676
7. Freeman R, Abuzinadah AR, Gibbons C, Jones P, Miglis MG, Sinn DI. Orthostatic Hypotension: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(11):1294-1309. http://doi: 10.1016/j.jacc.2018.05.079
8. Furlan R, Porta A, Costa F, Tank J, Baker L, Schiavi R, Robertson D, Malliani A, Mosqueda-Garcia R. Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation. 2000;101(8):886-92. http://doi: 10.1161/01.cir.101.8.886
9. Gonzales R, Manzo A, Delgado J, Padilla JM, Trenor B, Saiz J. A computer base photoplethysmographic vascular analyser through derivatives. Comp Cardiol. 2008; 35:177-80. http://doi: 10.1109/CIC.2008.4749006
10. Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, et al. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension. 1998;32:365–70. http://doi: 10.1161/01.hyp.32.2.365
11. Hashimoto J, Watabe D, Kimura A, Takahashi H, Ohkubo T, Totsune K, Imai Y. Determinants of the second derivative of the finger photoplethysmogram and brachial-ankle pulse-wave velocity: the Ohasama study. Am J Hypertens. 2005;18(4 Pt 1):477-85. http://doi: 10.1016/j.amjhyper.2004.11.009
12. Ohshita K, Yamane K, Ishida K, Watanabe H, Okubo M, Kohno N. Post-challenge hyperglycaemia is an independent risk factor for arterial stiffness in Japanese men. Diabet Med. 2004;21:636-39. http://doi: 10.1111/j.1464-5491.2004.01161.x

13. Imanaga I, Hara H, Koyanagi S, Tanaka K. Correlation between wave components of the second derivative of plethysmogram and arterial distensibility. Jpn Heart J 1998; 39:775-84. http://doi: 10.1536/ihj.39.775
14. Hashimoto J, Chonan K, Aoki Y, Nishimura T, Ohkubo T, Hozawa A, et al. Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors. J Hypertens. 2002; 20:2415-22. http://doi: 10.1097/00004872-200212000-00021
15. Otsuka T, Kawada T, Katsumata M, Ibuki C. Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population. Circ J. 2006;70:304-10. http://doi: 10.1253/circj.70.304
16. Bortolotto LA, Blacher J, Kondo T, Takazawa K, Safar ME. Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am J Hypertens. 2000;13:165-71. http://doi: 10.1016/s0895-7061(99)00192-2
17. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8(5):491-8. http://doi: 10.2337/diacare.8.5.491
18. Abraham A, Barnett C, Katzberg HD, Lovblom LE, Perkins BA, Bril V. Toronto Clinical Neuropathy Score is valid for a wide spectrum of polyneuropathies. Eur J Neurol. 2018;25(3):484-90. http://doi: 10.1111/ene.13533

19. Kawada T, Otsuka T. Factor structure of indices of the second derivative of the finger photoplethysmogram with metabolic components and other cardiovascular risk indicators. Diabetes Metab J. 2013;37(1):40-5. http://doi: 10.4093/dmj.2013.37.1.40
20. Otsuka T, Kawada T, Katsumata M, Ibuki C, Kusama Y. Independent determinants of second derivative of the finger photoplethysmogram among various cardiovascular risk factors in middle-aged men. Hypertens Res. 2007;30(12):1211-8. http://doi: 10.1291/hypres.30.1211
21. Munir S, Guilcher A, Kamalesh T, Clapp B, Redwood S, Marber M, Chowienczyk P. Peripheral augmentation index defines the relationship between central and peripheral pulse pressure. Hypertension. 2008;51(1):112-8. http://doi: 10.1161/HYPERTENSIONAHA.107.096016
22. Kohjitani A, Miyata M, Iwase Y, Sugiyama K. Responses of the second derivative of the finger photoplethysmogram indices and hemodynamic parameters to anesthesia induction. Hypertens Res. 2012;35(2):166-72. http://doi: 10.1038/hr.2011.152
23. Kimura Y, Takamatsu K, Fujii A, Suzuki M, Chikada N, Tanada R, Kume Y, Sato H. Kampo therapy for premenstrual syndrome: efficacy of Kamishoyosan quantified using the second derivative of the fingertip photoplethysmogram. J Obstet Gynaecol Res. 2007;33(3):325-32. http://doi: 10.1111/j.1447-0756.2007.00531.x
24. Tabara Y, Igase M, Okada Y, Nagai T, Miki T, Ohyagi Y, Matsuda F, Kohara K. Usefulness of the second derivative of the finger photoplethysmogram for assessment of end-organ damage: The J-SHIPP study. Hypertens Res. 2016;39(7):552-6. http://doi: 10.1038/hr.2016.18
25. Kannenkeril D, Bosch A, Harazny J, Karg M, Jung S, Ott C, Schmieder RE. Early vascular parameters in the micro- and macrocirculation in type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):128. http://doi: doi: 10.1186/s12933-018-0770-4
26. Drinkwater JJ, Chen FK, Brooks AM, Davis BT, Turner AW, Davis TME, Davis WA. The association between carotid disease, arterial stiffness and diabetic retinopathy in type 2 diabetes: the Fremantle Diabetes Study Phase II. Diabet Med. 2021;38(4):e14407. http://doi: doi: 10.1111/dme.14407

Descargas

Publicado

2021-08-06

Cómo citar

Rivas-Vilchis, J. F., & Barrera-Escorcia, E. (2021). Orthostatic response in patients with type 2 diabetes mellitus evaluated through acceleration photoplethysmogram. Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare, 1(2), 5–10. https://doi.org/10.36105/psrua.2021v1n2.01