mRNA-based COVID-19 vaccines: a new age

Palabras clave: vacunas ARNm, CVnCoV, mRNA-1273, BNT162

Resumen

El desarrollo de vacunas basadas en la tecnología de ARNm tiene más de una década de arduo trabajo e importantes avances; varios estudios clínicos se llevan a cabo para probar estas vacunas en el tratamiento y prevención de infecciones y enfermedades como cáncer, citomegalovirus, ébola, virus de hepatitis C, virus de inmunodeficiencia humana, influenza, malaria, rabia y Zika. Sin embargo, no fue hasta la pandemia de COVID-19 en 2020 que tomó un rol protagónico en una importante carrera para desarrollar estrategias terapéuticas contra la enfermedad, principalmente una vacuna. La tecnología de ARNm permite la generación de vacunas de manera rápida y segura, con la posibilidad de escalar la producción a grandes niveles. En la actualidad, ya contamos con vacunas de ARNm contra COVID-19 (Pfizer-BioNtech® y Moderna®) que cuentan con el registro de emergencia de entidades reguladoras, entre ellas la FDA en EUA y la EMA en Europa, y otras tantas en proceso de obtención de datos clínicos que permitirán su disponibilidad en poco tiempo. Por otra parte, los ensayos clínicos de fase 3 siguen su curso. Los análisis preliminares registran niveles de eficacia notablemente altos: en torno a 95% contra la enfermedad leve-moderada y hasta 100% contra la enfermedad grave, incluida la muerte. Los distintos ensayos clínicos muestran un perfil de seguridad sólido, igual o mayor que el de muchas vacunas de uso común, aunque las vacunas no están exentas de eventos adversos. A pesar de lo anterior, existen importantes retos técnicos y dudas debido a la falta de información a largo plazo. Las vacunas de ARNm representan una nueva era en la vacunación y uno de los avances más importantes en salud, ciencia y tecnología en los últimos tiempos. En esta revisión mostraremos los principios básicos de las vacunas de ARNm y nos centraremos en las vacunas utilizadas contra la COVID-19. La evidencia científica demuestra que las vacunas de ARNm son una de las mejores opciones, no solo para combatir la pandemia de SARS-CoV-2 sino como una tecnología novedosa contra diversas enfermedades.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol.
2021;21(2):83-100. https://doi.org/10.1038/s41577-020-00479-7
2. World Health Organization. Child mortality and causes of death. WHO.
https://www.who.int/gho/child_health/mortality/mortality_under_five_text/en/ (2020)
3. Pardi, N; Hogan, MJ; Porter, F.W.; Weissman, D. mRNA Vaccines—A New Era in Vaccinology. Nat Rev Drug Discov.
2018;17:261-79. https://doi.org/10.1038/nrd.2017.243.
4. Li J, Zhang C, Shan H. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
https://doi.org/10.3389/fimmu.2019.00594
5. Robbiani, DF, Gaebler, C.; Muecksch, F.; Lorenzi, J.C.C.;Wang, Z.; Cho, A.; Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al. Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals. Nature. 2020;584:437-42.
https://doi.org/10.1038/s41586-020-2456-9
6. Weissman D. mRNA transcript therapy. Expert Rev Vaccines. 2015;14:265-81.
https://doi.org/10.1586/14760584.2015.973859
7. Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleosidemodified,
protein-encoding mRNA. Nucleic Acids Res. 2011;39:e142. https://doi.org/10.1093/nar/gkr695
8. Kallen KJ, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive® vaccines. Hum Vaccin
Immunother. 2013;9:2263-2276.
9. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol. 2012;9:1319-30.
10. Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45:737–48.
https://doi.org/10.1016/j.immuni.2016.09.011
11. Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol. 2015;22:109-15. https://doi.org/10.1038/nsmb.2943
12. Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet. 1963;2:113-16.
https://doi.org/10.1016/S0140-6736(63)92585-6
13. Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of
nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165-75.
https://doi.org/10.1016/j.immuni.2005.06.008
14. Brito LA, Chan M, Shaw CA, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014;22:2118-29. https://doi.org/10.1038/mt.2014.133.
15. Van Lint S, et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines. 2015;14:235-51.
https://doi.org/10.1586/14760584.2015.957685
16. Geall AJ, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109:14604-09.
https://doi.org/10.1073/pnas.1209367109
17. Pardi N, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various
routes. J Control Release. 2015;217:345-51.
https://doi.org/10.1016/j.jconrel.2015.08.007
18. Laczkó, D.; Hogan, M.J.; Toulmin, S.A.; Hicks, P.; Lederer, K.; Gaudette, B.T.; Castaño, D.; Amanat, F.; Muramatsu, H.; Oguin, T.H.; et al. A Single Immunization with Nucleoside-Modified MRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity. 2020;53:724–32.e7.
https://doi.org/10.1016/j.immuni.2020.07.019
19. Rauch, S.; Roth, N.; Schwendt, K.; Fotin-Mleczek, M.; Mueller, S.O.; Petsch, B. mRNA Based SARS-CoV-2 Vaccine
Candidate CVnCoV Induces High Levels of Virus Neutralizing Antibodies and Mediates Protection in Rodents. Biorxiv
2020. https://doi.org/10.1038/s41541-021-00311-w
20. Lu, J.; Lu, G.; Tan, S.; Xia, J.; Xiong, H.; Yu, X.; Qi, Q.; Yu, X.; Li, L.; Yu, H.; et al. A COVID-19 MRNA Vaccine Encoding SARS-CoV-2 Virus-like Particles Induces a Strong Antivirallike
Immune Response in Mice. Cell Res. 2020;30:936–39.
https://doi.org/10.1038/s41422-020-00392-7
21. Lederer, K.; Castaño, D.; Atria, D.G.; Oguin, T.H.; Wang, S.; Manzoni, T.B.; Muramatsu, H.; Hogan, M.J.; Amanat, F.;
Cherubin, P.; et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity.
2020;53:1281–95.e5. https://doi.org/10.1016/j.immuni.2020.11.009
22. Corbett KS, Flynn B, Foulds KE, Francica, JR, Boyoglu-Barnum S, Werner, A.P, Flach B, O’Connell S, Bock KW, Minai M. et al. Evaluation of the MRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383:1544-55. https://doi.org/10.1056/NEJMoa2024671
23. Lambert PH, Ambrosino DM, Andersen SR, Baric RS, Black SB, Chen RT, et al. Consensus summary report for CEPI/BC March 12-13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine. 2020;38:4783-91. https://doi.org/10.1016/j.vaccine.2020.05.064
24. Graham, B.S. Rapid COVID-19 Vaccine Development. Science. 2020;368:945–46.
https://doi.org/10.1126/science.abb8923
25. Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; et al. A Prefusion SARS-CoV-2 Spike RNA Vaccine Is Highly Immunogenic and Prevents Lung Infection in Non-Human Primates. Biorxiv 2020.
26. Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 MRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature. 2020;586:567-71.
27. Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.;
Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15.
28. Xu, X. & Gao, X. Immunological responses against SARScoronavirus infection in humans. Cell Mol Immunol.
2004;1:119-22.
29. Zhong X, Yang H, Guo Z-F, Sin W-YF, Chen W, Xu J, et al. B-cell responses in patients who have recovered from
severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J Virol.
2005;79:3401-8.
30. Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, Pascolo S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007;14:1175-80.
31. Kariko K, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased
translational capacity and biological stability. Mol Ther. 2008;16:1833-40.
32. Fotin-Mleczek M, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother. 2011;34:1–15.
33. COVID-19 Vaccines and Allergic Reactions. Available online: https://www.Cdc.Gov/Coronavirus/2019Ncov/Vaccines/Safety/Allergic-Reaction.Html
34. Edwards DK, et al. Adjuvant effects of a sequenceengineered mRNA vaccine: translational profiling
demonstrates similar human and murine innate response. J Transl Med. 2017;15:1.
35. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu
Rev Immunol. 2005;23:307-36.
36. Kannemeier C, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007;104:6388-93.
37. Fischer S, et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood. 2007;110:2457-65.
38. Fulginiti V.A., Eller J.J., Sieber O.F., Joyner J.W., Minamitani M., Meiklejohn G. Respiratory virus immunization. I. A
field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an
alum - precipitated respiratory syncytial virus vaccine. Am J Epidemiol. 1969;89:435-48.
39. Kim, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated
vaccine. A J Epidemiol. 2020;89:422-34.
40. https://www.pfizer.com/science/coronavirus/updates
41. BioNTech. COVID-19. https://biontech.de/covid-19
42. BioNTech and Pfizer announce regulatory approval from German authority Paul-Ehrlich-Institut to commence first
clinical trial of COVID-19 vaccine candidates [press release]. New York, NY: Pfizer Inc.; April 22, 2020.
43. Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.;
Maurus, D.; et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature.
2020;586:594-99.
44. Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman,
A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson,
K.A.; et al. Phase I/II Study of COVID-19 RNA Vaccine
BNT162b1 in Adults. Nature. 2020;586:589-93.
45. Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.;
Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan,
M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two
RNA-Based Covid-19 Vaccine Candidates. N Engl J Med.
2020;383:2439-50.
46. He Y, Zhou Y, Liu S, et al. Receptor-binding domain of
SARS-CoV spike protein induces highly potent neutralizing
antibodies: implication for developing subunit vaccine.
Biochem Biophys Res Commun. 2004;324:773-81.
47. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure
of the 2019-nCoV spike in the prefusion conformation.
Science. 2020;367:1260-63.
48. Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.;
Maurus, D.; et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature.
2020;586:594-99.
49. Koyama T, et al. Bull World Health Organ. 2020;98:495-504.
50. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.;
Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine. N Engl J Med. 2020.
51. Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-Based Vaccine Antigen 412 Design. Annu Rev Med.
2019;70:91-104.
52. McLellan, J. S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion414 specific neutralizing
antibody. Science. 340:1113-17.
53. https://www.modernatx.com/modernas-work-potentialvaccine-against-covid-19
54. Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Durability of Responses after SARS-CoV-2 MRNA-1273 Vaccination. N Engl J Med. 2021;384:80-2.
55. Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison,
M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 MRNA-1273 Vaccine in
Older Adults. N Engl J Med. 2020.
56. Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu- Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the MRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383:1544-55.
57. Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An MRNA Vaccine against SARS-CoV-2—Preliminary Report. N Engl J Med. 2020;383:1920-31.
58. Bottazzi ME, Strych U, Hotez PJ, Corry DB. Coronavirus vaccine-associated lung immunopathology-what is the
significance?. Microbes Infect. 2020;22:403-04.
59. Baden LR, Sahly HME, Essink B, Kotloff K, Frey S, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:403-16.
60. Rauch S, Gooch K, Hall Y, Salguero FJ, Dennis MJ, Gleeson FV, Harris D, Ho C, et al. mRNA vaccine CVnCoV protects non-human primates from SARS-CoV-2 challenge infection. bioRxiv 2020.12.23.424138.
https://doi.org/10.1101/2020.12.23.424138
61. https://ourworldindata.org/covid-vaccinations
62. Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNAbased
Vaccines. Pharmaceutics. 2020;12:102. https://doi.org/10.3390/pharmaceutics12020102
63. Robert A. Feldman, Rainard Fuhr, Igor Smolenov, Amilcar Ribeiro, Lori Panther, Mike Watson, et al. mRNA vaccines
against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy
adults in phase 1 randomized clinical trials. Vaccine. 2019;37:3326-34.
https://doi.org/10.1016/j.vaccine.2019.04.074
64. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox J. M, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. 2017;168:1114-25.e10. https://doi.org/10.1016/j.cell.2017.02.017
65. Sara Sousa Rosa, Duarte MF Prazeres, Ana M Azevedo, Marco PC Marques. mRNA vaccines manufacturing:
challenges and bottlenecks. Vaccine. 2021;39:2190-2200. https://doi.org/10.1016/j.vaccine.2021.03.038
66. Draft landscape and tracker of COVID-19 candidate vaccines (who.int). https://www.who.int/publications/m/item/draftlandscape-of-covid-19
Publicado
2021-08-25
Cómo citar
Rodrigo Martínez-Espinosa, R., & Gabriela Ramírez-Vélez, G. (2021). mRNA-based COVID-19 vaccines: a new age. Proceedings of Scientific Research Universidad Anáhuac, 1(2), 18-30. https://doi.org/https://doi.org/10.36105/psrua.2021v1n2.03
Sección
Review Articles