Effect of different bacteria on the biodegradation of polyurethane

Autores/as

DOI:

https://doi.org/10.36105/psrua.2021v1n2.02

Palabras clave:

bacteria, biodegradación, poli(éter uretano), biotecnología

Resumen

El poliuretano se usa y sobreexplota alrededor del mundo en la fabricación de diversos productos, sin embargo, es un material de difícil degradación y, por su acumulación, un contaminante importante al ser desechado. Los resultados de investigaciones recientes demuestran el potencial de diferentes bacterias y sus enzimas para biodegradar diferentes plásticos, como el poliuretano. En esta revisión se buscó agrupar, analizar y relacionar las técnicas utilizadas por diferentes especies bacterianas para biodegradar poliuretano, identificadas en diferentes estudios, buscando en bases de datos como PubMed, Web of Science y Scopus. Se encontraron diferentes especies de proteobacterias, actinobacterias y endobacterias que biodegradan el poliuretano por oxidación e hidrólisis para obtener fuentes de carbono y nitrógeno. Se observaron cambios como pérdida de peso, fuerza de tensión y cambios químicos y de superficie en las propiedades del polímero, mostrando que las tecnologías biológicas tienen un impacto directo sobre el poliuretano al modificar la molécula de diferentes maneras.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX metrics

Citas

1. Meyer Cifuentes IE, Öztürk B. Exploring microbial consortia from various environments for plastic degradation. Methods in Enzymology [Internet]. 2021 [cited Feb 7, 2021]. https://doi.org/10.1016/bs.mie.2020.12.005
2. Solís-González CJ, Domínguez-Malfavón L, Vargas-Suárez M, Gaytán I, Cevallos MÁ, Lozano L, Loza-Tavera H. Novel Metabolic Pathway for N-Methylpyrrolidone Degradation in Alicycliphilus sp. Strain BQ1. AEM [Internet]. 2017 [cited Oct 18, 2020];84(1). https://doi.org/10.1128/AEM.02136-17
3. Oceguera-Cervantes A, Carrillo-García A, López N, Bolaños-Nuñez S, Cruz-Gómez MJ, Wacher C, et al. Characterization of the Polyurethanolytic Activity of Two Alicycliphilus sp. Strains Able To Degrade Polyurethane and N-Methylpyrrolidone. AEM [Internet]. 2007 [cited Oct 18, 2020];73:6214–23. https://doi.org/10.1128/AEM.01230-07
4. Stepien AE, Zebrowski J, Piszczyk Ł, Boyko VV, Riabov SV, Dmitrieva T, et al. Assessment of the impact of bacteria Pseudomonas denitrificans, Pseudomonas fluorescens, Bacillus subtilis and yeast Yarrowia lipolytica on commercial poly (ether urethanes). Polym Test [Internet]. 2017 [cited Oct 18, 2020]; 63:484-493. https://doi.org/10.1016/j.polymertesting.2017.08.038
5. Plastics Europe. Plastics—the facts 2015. Plastics-Europe [Internet]. 2015 [cited Oct1 8, 2020];33(2)
6. Mahajan N, Gupta P. New insights into the microbial degradation of polyurethanes. RSC Adv [Internet]. 2015 [cited Oct 18, 2020];5:41839–41854. https://doi:10.1039/C5RA04589D.
7. Ru J, Huo Y, Yang Y. Microbial Degradation and Valorization of Plastic Wastes. Frontiers in Microbiology [Internet]. 2020 [cited Feb 6, 2021];11. https://doi.org/10.3389/fmicb.2020.00442
8. Azubuike CC, Chikere CB, Okpokwasili, GC. Bioremediation techniques‐classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol [Internet]. 2016 [cited Oct 18, 2020];32(180). https://doi.org/10.1007/s11274-016-2137-x
9. Peng Y, Shih Y, Lai Y, Liu Y, Liu Y, Lin N. Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ. Sci. Pollut. Res [Internet]. 2015 [cited Oct 18, 2020];21(16):9529–9537. https://doi.org/10.1007/s11356-014-2647-8.
10. Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment [Internet]. 2021 [cited Feb 6, 2021];759. https://doi.org/10.1016/j.scitotenv.2020.143536
11. Hung CS, Zingarelli S, Nadeau LJ, Biffinger JC, Drake CA, Crouch AL, Barlow DE, Russell JN Jr, Crookes-Goodson WJ. Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Appl Environ Microbiol [Internet]. 2016 [cited Oct 18, 2020];82:6080–6090. https://doi.org/10.1128/AEM.01448-16.
12. Biffinger JC, Barlow DE, Cockrell AL, Cusick KD, Hervey WJ, Fitzgerald LA, Nadeau LJ, Hung CS, Crookes-Goodson WJ, Russell JN. The applicability of Impranil® DLN for gauging the biodegradation of polyurethanes. Polym Degradation Stab [Internet]. 2015 [cited Oct 18, 2020];120:178-185. https://doi.org/10.1016/j.polymdegradstab.2015.06.020.
13. Glaser JA. Biological Degradation of Polymers in the Environment. Plastics in the Environment [Internet]. 2019 [cited Oct 18, 2020]. https://doi.org/10.5772/intechopen.85124.
14. Gamerith C, Herrero-Acero E, Pellis A, Ortner A, Vielnascher R, Luschnig D, Zartl B, Haernvall K, Zitzenbacher S, Strohmeier G, et al. Improving Enzymatic Polyurethane Hydrolysis by Tuning Enzyme Sorption. Polym. Degrad. Stab [Internet]. 2016 [cited Oct 18, 2020]132:69–77. https://doi.org/10.1016/j.polymdegradstab.2016.02.025
15. Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W. Functional Characterization and Structural Modeling of Synthetic Polyester-Degrading Hydrolases from Thermomonospora curvata. AMB Express [Internet]. 2015[cited Oct 18, 2020];4(44). https://doi.org/10.1186/s13568-014-0044-9.
16. Miyakawa T, Mizushima H, Ohtsuka J, Oda M, Kawai F, Tanokura M. Structural Basis for the Ca2+-Enhanced Thermostability and Activity of PET-Degrading Cutinase-Like Enzyme from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol [Internet]. 2015 [cited Oct 18, 2020];99:4297–4307. https://doi.org/10.1007/s00253-014-6272-8
17. Schmidt J, Wei R, Oeser T, Dedavid e Silva L, Breite D, Schulze A, Zimmermann W. Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymers [Internet]. 2017 [cited Oct 18, 2020];9(2):65. https://doi.org/10.3390/polym9020065
18. Martinez-Martinez M, Coscolin C, Santiago G, Chow J, Stogios PJ, Bargiela R, et al. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem Biol [Internet]. 2018 [cited Oct 20, 2020];13:225–234. https://doi.org/10.1021/acschembio.7b00996
19. Nakkabi A, Sadiki M, Fahim M, Ittobane N, Ibnsouda-Koraichi S, Barkai H, El Abed S. Biodegradation of Poly (ester urethane)s by Bacillus subtilis. Int. J. Environ. Res [Internet]. 2015 [cited Oct 20, 2020];9(1):157–162. https://doi.org/10.22059/IJER.2015.885
20. Awasthi S, Srivastava P, Singh P, Tiwary D, Mishra PK. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech [Internet]. 2017 [cited Oct 20,2020];7(10). https://doi.org/10.1007/s13205-017-0959-3.
21. Fotopoulou KN, Karapanagioti HK. Degradation of Various Plastics in the Environment. Handb. Environ. Chem [Internet]. 2017 [cited Oct 20, 2020]; 78:71-92. https://doi.org/10.1007/698_2017_11
22. Deroiné M, Le Duigou A, Corre YM, Le Gac PY, Davies P, César G, Bruzauda S. Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym. Degrad. Stab [Internet]. 2014 [cited Feb 6, 2021];108:319-329. https://doi.org/10.1016/j.polymdegradstab.2014.01.020
23. Da Fonte Porto Carreiro A, Dos Santos Cruz CA, Vergani CE. Hardness and compressive strength of indirect composite resins: effects of immersion in distilled water. J Oral Rehabil [Internet]. 2004 [cited Feb 6, 2021];31(11): 1085-1089. https://doi.org/10.1111/j.1365-2842.2004.01147.x
24. Sarkhel R, Sengupta S, Das P, Bhowal A. Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine sources. J. Polym. Res [Internet] 2019 [cited Oct 20, 2020]; 27(16). https://doi.org/10.1007/s10965-019-1973-4
25. Skariyachan S, Setlur AS, Naik SY, Naik AA, Usharani M, Vasist KS. Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environ. Sci. Pollut. Res [Internet]. 2017 [cited Oct 20, 2020];24(9):8443-8457. https://doi.org/10.1007/s11356-017-8537-0
26. El-Wakil AEAA, Moustafa H, Youssef AM. Antimicrobial low-density polyethylene/low-density polyethylene-grafted acrylic acid biocomposites based on rice bran with tea tree oil for food packaging applications. J. Thermoplast. Compos. Mater [Internet]. 2020 [cited Oct 20, 2020];0(0). https://doi.org/10.1177/0892705720925140 0892705720925140
27. Kupka V, Benesova P, Obruca S, Brtnikova J, Marova I, Jancar J, Vojtova L. Biodegradation of polyurethane-polyhydroxybutyrate elastomeric composite investigated from morphological and structural viewpoint. J. Appl. Polym. Sci [Internet]. 2018 [cited Feb 6, 2021];46909. https://doi.org/10.1002/app.46909
28. Sarmah P, Rout J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res [Internet]. 2018 [cited Oct 20, 2020]; 25(33):33508-33520. https://doi.org/10.1007/ s11356-018-3079-7
29. Shalini R, Sasikumar C. Biodegradation of Low Density Polythene materials using microbial consortium – An overview. International Journal of Pharmaceutical and Chemical Sciences [Internet]. 2015 [cited Feb 7, 2021];4: 507- 514.
30. Novotný Č, Malachová K, Adamus G, Kwiecień M, Lotti N, Soccio M, Verney V, Fava F. Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int. Biodeterior. Biodegradation [Internet]. 2018 [cited Oct 20, 2020];132:259-267. https://doi.org/10.1016/j.ibiod.2018.04.014.

Descargas

Publicado

2021-08-06

Cómo citar

Castillo-Gaspar, K., Román-Ayala, V., Domínguez-K Rescala, A., & Ramírez-Gualito, K. (2021). Effect of different bacteria on the biodegradation of polyurethane. Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare, 1(2), 11–17. https://doi.org/10.36105/psrua.2021v1n2.02