Modelo sencillo para la predicción de la calificación crediticia para empresas fintech aplicando técnicas SMOTE y MRMR
Contenido principal del artículo
Resumen
Las empresas fintech han mejorado la eficiencia de la industria financiera y han umentado la inclusión financiera. Sin embargo, también han incorporado nuevos riesgos al sistema financiero. Los reguladores, los inversionistas y los investigadores están preocupados de que sus dificultades financieras puedan afectar a todo el sistema financiero. Nuestro estudio tiene como objetivo profundizar en la eficacia de las técnicas de machine learning (aprendizaje automático) para identificar alertas tempranas de deterioro del riesgo crediticio de las fintech. Valiéndonos de medidas contables y de mercado comúnmente empleadas en la literatura, creamos varios clasificadores para predecir las calificaciones crediticias de las fintech. Los algoritmos de clasificación enfrentan un desafío cuando el número de observaciones entre clases no es equivalente, lo que afecta su desempeño. Debido al tamaño limitado de las fintech que cotizan en la bolsa y que tienen una calificación crediticia a nivel de emisor, nuestra base de datos incluye pocas observaciones y está muy desequilibrada. Los resultados de nuestro estudio muestran que la técnica de sobremuestreo SMOTE mejora el poder predictivo de los algoritmos de aprendizaje automático y que los algoritmos de selección de características como MRMR permiten la generación de modelos más sencillos y fáciles de entender. Nuestros resultados sugieren que los algoritmos de clasificación basados en KNN tienen mayor precisión para predecir las calificaciones crediticias de las fintech.
Descargas
PLUMX Metrics
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
The Anáhuac Journal se distribuye bajo Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.
Citas
Agarwal, S., & Zhang, J. (2020). FinTech, Lending and Payment Innovation: A Review. Asia-Pacific Journal of Financial Studies, 49(3), 353–367. https://doi.org/10.1111/ajfs.12294
Al-Shari, H. A., & Lokhande, M. A. (2023). The Relationship Between the Risks of Adopting FinTech in Banks and their Impact on the Performance. Cogent Business and Management, 10(1). https://doi.org/10.1080/23311975.2023.2174242
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933
Anagnostopoulos, I. (2018). Fintech and Regtech: Impact on Regulators and Banks. Journal of Economics and Business, 100, 7–25. https://doi.org/10.1016/j.jeconbus.2018.07.003
Bellotti, T., & Crook, J. (2009). Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications, 36(2), 3302–3308. https://doi.org/10.1016/j.eswa.2008.01.005
Beneish, M. D. (1999). The Detection of Earnings Manipulation. Financial Analysts Journal, 55(5), 24–36. http://www.jstor.org/stable/4480190
Bloomberg. (2024). Country Risk Premium. Retrieved on June 13, 2024, Bloomberg Professional (database).
Brownlee, J. (2021). Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, and Apply Cost-Sensitive Learning. Self-published.
Cevik, S. (2024) The Dark Side of the Moon? Fintech and Financial Stability. International Review of Economics, 71, 421–433. https://doi.org/10.1007/s12232-024-00449-8
Chaudhry, S. M., Ahmed, R., Huynh, T. L. D., & Benjasak, C. (2022). Tail Risk and Systemic Risk of Finance and Technology (FinTech) Firms. Technological Forecasting and Social Change, 174, 121191. https://doi.org/10.1016/j.techfore.2021.121191
Chawla, N. v, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and Machine Learning Models in Credit Scoring: A Systematic Literature Survey. Applied Soft Computing Journal, 91, 106263. https://doi.org/10.1016/j.asoc.2020.106263
Demirgüç-Kunt, A., Klapper,L., Singer, D., Ansar, S. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. World Bank. https://doi.org/10.48529/jq97-aj70
Ding, C., & Peng, H. (2005). Minimum Redundancy Feature Selection from Microarray Gene Expression Data. Journal of Bioinformatics and Computational Biology, 3(2), 185–205. https://doi.org/10.1142/s0219720005001004
Doumpos, M., Niklis, D., Zopounidis, C., & Andriosopoulos, K. (2015). Combining Accounting Data and a Structural Model for Predicting Credit Ratings: Empirical Evidence from European Listed Firms. Journal of Banking and Finance, 50, 599–607. https://doi.org/10.1016/j.jbankfin.2014.01.010
Durand, D. (1941). Risk Elements in Consumer Installment Financing. National Bureau of Economy Research (NBER). https://econpapers.repec.org/bookchap/nbrnberbk/dura41-1.htm
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1–67. https://www.jstor.org/stable/2241837
Galil, K., Hauptman, A., & Rosenboim, R. L. (2023). Prediction of Corporate Credit Ratings with Machine Learning: Simple Interpretative Models. Finance Research Letters, 58, 104648. https://doi.org/10.1016/j.frl.2023.104648
Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A Comparative Study of Forecasting Corporate Credit Ratings Using Neural Networks, Support Vector Machines, and Decision Trees. North American Journal of Economics and Finance, 54, 101251. https://doi.org/10.1016/j.najef.2020.101251
Gupton, G. M., Finger, C.C., & Bhatia, M. (1997). CreditMetrics™: Technical Document. J.P. Morgan & Company Incorporated. https://www.researchgate.net/publication/301776007_CreditMetrics_-_Technical_Document
Hajek, P., & Michalak, K. (2013). Feature Selection In Corporate Credit Rating Prediction. Knowledge-Based Systems, 51, 72–84. https://doi.org/10.1016/j.knosys.2013.07.008
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature Review: Machine Learning Techniques Applied to Financial Market Prediction. Expert Systems with Applications, 124, 226–251. https://doi.org/10.1016/j.eswa.2019.01.012
Li, J. P., Mirza, N., Rahat, B., & Xiong, D. (2020). Machine Learning and Credit Ratings Prediction in the Age of Fourth Industrial Revolution. Technological Forecasting and Social Change, 161, 120309. https://doi.org/10.1016/j.techfore.2020.120309
Jiang, Y. (2022). Credit Ratings, Financial Ratios, and Equity Risk: A Decomposition Analysis Based on Moody’s, Standard & Poor’s and Fitch’s ratings. Finance Research Letters, 46, 102512. https://doi.org/10.1016/j.frl.2021.102512
Junarsin, E., Pelawi, R. Y., Kristanto, J., Marcelin, I., & Pelawi, J. B. (2023). Does Fintech Lending Expansion Disturb Financial System Stability? Evidence from Indonesia. Heliyon, 9(9), e18384. https://doi.org/10.1016/j.heliyon.2023.e18384
Kealhofer, S., McQuown, J., & Vasicek, O. (1997). The KMV Model for Credit Portfolio Management. KMV Corporation.
Kiff, J., Kisser, M., & Schumacher, L. (2013). Rating Through-the-Cycle: What Does the Concept Imply for Rating Stability and Accuracy? IMF Working Paper 13(64). https://doi.org/10.5089/9781475552119.001
Merton, R.C. (1974). On The Pricing Of Corporate Debt: The Risk Structure Of Interest Rates. The Journal of Finance, 29(2). 449-470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
Metz, A. & Cantor, R. (2006). The Distribution of Common Financial Ratios by Rating and Industry for North American Non-Financial Corporations: July 2006, Moody’s Special Comment. (Report Number: 98551). https://www.moodys.com/sites/products/defaultresearch/2005700000436062.pdf
Milian, E. Z., Spinola, M. de M., & Carvalho, M. M. de. (2019). Fintechs: A Literature Review and Research Agenda. Electronic Commerce Research and Applications, 34, 100833. https://doi.org/10.1016/j.elerap.2019.100833
Siriseriwan, W. (2021). Smotefamily: A Collection of Oversampling Techniques for Class Imbalance Problem Based on SMOTE. [R package smotefamily version 1.4.0]. https://CRAN.R-project.org/package=smotefamily
Snoek, J., Larochelle, H., & Adams, R P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1206.2944
Sundar, R., & Punniyamoorthy, M. (2019). Performance Enhanced Boosted SVM for Imbalanced Datasets. Applied Soft Computing Journal, 83, 105601. https://doi.org/10.1016/j.asoc.2019.105601
Statista. (2023). Transaction Value of Fintech Industry Worldwide from 2018 to 2023, with Forecasts from 2024 to 2028, by Segment (in Trillion U.S. dollars). Statista Digital Market Insights. Retrieved June 30, 2024. https://www.statista.com/statistics/1384088/estimated-global-fintech-transaction-value-by-segment/
Statista. (2024a). Number of Fintech Users Worldwide from 2023 to 2023, with Forecasts from 2024 to 2028, by Segment (in Billions). Statista Digital Market Insights. Retrieved June 27, 2024. https://www.statista.com/statistics/1384328/estimated-fintech-users-by-segment/
Statista. (2024b). Number of Fintechs Worldwide from 2018 to 2024, by Region. Statista. Retrieved June 27, 2024. https://www.statista.com/statistics/893954/number-fintech-startups-by-region/
S&P Global (2024). Understanding Credit Ratings. https://www.spglobal.com/ratings/en/about/intro-to-credit-ratings
S&P Capital IQ. (2024). Payment Processors; Payment Service Providers and Gateways; Mobile Wallets; Payments Fraud Management; Money Transfer and Remittance; Payments Infrastructure: Public company profile. Retrieved on June 13, 2024 (database).
Tello-Gamarra, J., Campos-Teixeira, D., Longaray, A. A., Reis, J., & Hernani-Merino, M. (2022). Fintechs and Institutions: A Systematic Literature Review and Future Research Agenda. Journal of Theoretical and Applied Electronic Commerce Research, 17(2), 722-750. https://doi.org/10.3390/jtaer17020038
Treu, J., Elss, V. I., Buono, G., & Winkler, P. (2021). The Rising of Fintech–How the Tech Revolution in Financial Services Represents a Paradigm Shift. Journal of International Business and Management, 4(5), 1-8. https://doi.org/10.37227/JIBM-2021-03-718
Wilson, T. C. (1998). Portfolio Credit Risk. Economic Policy Review, Vol. 4, No. 3. http://dx.doi.org/10.2139/ssrn.1028756