El índice de sentimiento en las redes sociales y su impacto en los rendimientos del S&P 500

Contenido principal del artículo

Lizeth Gordillo Martínez
https://orcid.org/0009-0000-9210-4955

Resumen

El estudio de la construcción y el análisis de índices de sentimiento en redes sociales es una técnica reciente que ha captado interés por su capacidad para identificar tendencias en los precios de las acciones. Además, la aplicación de inteligencia artificial para analizar rápidamente grandes volúmenes de datos de diversas fuentes de información ha creado una nueva forma de evaluar información masiva de redes sociales. El procesamiento del lenguaje natural (NLP, por sus siglas en inglés) es el método preferido que se sigue en la investigación. Originado en los años cincuenta, el NLP surgió de la intersección entre la inteligencia artificial y la lingüística. En un comienzo se empleó para recuperar información textual, con métodos basados en estadísticas para indexar y buscar de manera eficaz en grandes secciones de texto.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX Metrics

Detalles del artículo

Cómo citar
Gordillo Martínez, L. (2024). El índice de sentimiento en las redes sociales y su impacto en los rendimientos del S&P 500. The Anáhuac Journal, 24(1), Págs. 222–245. https://doi.org/10.36105/theanahuacjour.2024v24n1.08
Sección
Artículos
Biografía del autor/a

Lizeth Gordillo Martínez, EGADE Business School, Tecnológico de Monterrey, México

Lizeth Gordillo Martínez began her professional career as coordinator for the Center for Technology and Financial Innovation while a BA student in international trade at the Tecnológico de Monterrey, Mexico City Campus. Gordillo Martínez conducted training workshops on databases specializing in finance and technology in various companies such as Bloomberg, Reuters, Economática, SaS, Eviews, and Numerix, and taught financial administration to 14 generations of students at the undergraduate level. Starting in 2008, she worked full-time leading negotiations with clients from the financial sector in the Latin America region at multinational companies with a technological and financial profile like Bloomberg, Thomson Reuters, Numerix, and Identy. Among her professional achievements are the creation of financial labs for private universities with Bloomberg and Reuters terminals, and the implementation of a Thomson Reuters ticker with financial indicators at the Mexican Stock Exchange (BMV) building. Gordillo Martínez secured Grupo Bancolombia as the first client—and first international bank—for Numerix in Latin America. There, she implemented a CVA calculation module for the bank’s treasury. At the same time, she continued with her graduate studies, earning a master’s degree in Finance, and in 2021 she started a PhD in financial sciences.

Citas

Akhtaruzzaman, M., Boubaker, S., & Goodell, J. W. (2023). Did the collapse of Silicon Valley Bank catalyze financial contagion? Finance Research Letters, 56, 104082. https://doi.org/10.1016/j.frl.2023.104082 DOI: https://doi.org/10.1016/j.frl.2023.104082

Broadstock, D. C., & Zhang, D. (2019). Social-media and intraday stock returns: The pricing power of sentiment. Finance Research Letters, 30, 116-123. https://www.sciencedirect.com/science/article/pii/S1544612318307888 DOI: https://doi.org/10.1016/j.frl.2019.03.030

Brooks, C. (2019). Introductory econometrics for finance. Cambridge University Press. DOI: https://doi.org/10.1017/9781108524872

Derakhshan, A., & Beigy, H. (2019). Sentiment analysis on stock social media for stock price movement prediction. Engineering Applications of Artificial Intelligence, 85, 569-578. https://www.sciencedirect.com/science/article/pii/S0952197619301666 DOI: https://doi.org/10.1016/j.engappai.2019.07.002

Feuerriegel, S., Heitzmann, S. F., & Neumann, D. (2015, January). Do investors read too much into news? How news sentiment causes price formation. In the 48th Hawaii International Conference on System Sciences, IEEExplore, 4803-4812. https://ieeexplore.ieee.org/abstract/document/7070391 DOI: https://doi.org/10.1109/HICSS.2015.571

Gidófalvi, G. (2001). Using news articles to predict stock price movements. Department of Computer Science and Engineering, University of California, San Diego. https://people.kth.se/~gyozo/docs/financial-prediction.pdf

Heston, S. L., & Sinha, N. R. (2016). News versus Sentiment: Predicting Stock Returns from News Stories. (FEDS Working Paper No. 2016-48). Finance and Economics Discussion Series, 1–35. https://doi.org/10.17016/feds.2016.048 DOI: https://doi.org/10.17016/feds.2016.048

Jia, J., Pan, H., & Su, J. (2023). Analysis of Motivations, Process, and Implications of Elon Musk’s Acquisition of Twitter. BCP Business & Management, 47, 145-153. https://doi.org/10.54691/bcpbm.v47i.5185 DOI: https://doi.org/10.54691/bcpbm.v47i.5185

Jia, Q., & Xu, S. (2022). An Overall Analysis of Twitter and Elon Musk M&A Deal. Highlights in Business, Economics and Management, 2, 436-441. https://doi.org/10.54097/hbem.v2i.2399 DOI: https://doi.org/10.54097/hbem.v2i.2399

Kliestik, T., Misankova, M., Valaskova, K., & Svabova, L. (2018). Bankruptcy prevention:New effort to reflect on legal and social changes. Science and Engineering Ethics, 24, 791-803. https://doi.org/10.1007/s11948-017-9912-4 DOI: https://doi.org/10.1007/s11948-017-9912-4

Lee, H., Lee, N., Seo, H., & Song, M. (2020). Developing a supervised learning-based social media business sentiment index. The Journal of Supercomputing, 76, 3882-3897. https://doi.org/10.1007/s11227-018-02737-x DOI: https://doi.org/10.1007/s11227-018-02737-x

Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences, 278, 826-840. https://doi.org/10.1016/j.ins.2014.03.096 DOI: https://doi.org/10.1016/j.ins.2014.03.096

Lugmayr, A. (2012). Predicting the future of investor sentiment with social media in stock exchange investments: A basic framework for the DAX performance index. In M. Friedrichsen, & W. Mühl-Benninghaus (Eds.), Handbook of social media management:value chain and business models in changing media markets (pp. 565-589).Springer. https://doi.org/10.1007/978-3-642-28897-5_33 DOI: https://doi.org/10.1007/978-3-642-28897-5_33

Manda, V. K. (2023). The Collapse of Silicon Valley Bank. MAR-Ekonomi: Jurnal Manajemen, Akuntansi Dan Rumpun Ilmu Ekonomi, 2(1), 59-70. https://jurnal.seaninstitute.or.id/index.php/marekonomi/article/view/232

Mendoza-Urdiales, R. A., Núñez-Mora, J. A., Santillán-Salgado, R. J., & Valencia-Herrera, H. (2022). Twitter sentiment analysis and influence on stock performance using transfer entropy and EGARCH methods. Entropy, 24(7), 874. https://doi.org/10.3390/e24070874 DOI: https://doi.org/10.3390/e24070874

Nam, K., & Seong, N. (2019). Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market. Decision Support Systems, 117, 100-112. https://doi.org/10.1016/j.dss.2018.11.004 DOI: https://doi.org/10.1016/j.dss.2018.11.004

Núñez-Mora, J. A., & Mendoza-Urdiales, R. A. (2023). Social sentiment and impact in US equity market: an automated approach. Social Network Analysis and Mining, 13(1), 111. https://doi.org/10.1007/s13278-023-01116-6 DOI: https://doi.org/10.1007/s13278-023-01116-6

O’Shaughnessy, J. P. (2006). Predicting the markets of tomorrow: A contrarian investment strategy for the next twenty years. Penguin. https://shorturl.at/hxHIV

Pandey, D. K., Hassan, M. K., Kumari, V., & Hasan, R. (2023). Repercussions of the Silicon Valley Bank collapse on global stock markets. Finance Research Letters, 55, 104013. https://doi.org/10.1016/j.frl.2023.104013 DOI: https://doi.org/10.1016/j.frl.2023.104013

Radio 5 [@radio5_rne]. (2023, March 13). "Europa llama a la tranquilidad frente a la quiebra del Silicon Valley Bank. La Comisión recuerda que su presencia en Europa es muy limitada, pero aseguran que estarán muy pendientes." [Tweet] X (formerly Tweeter). https://twitter.com/radio5_rne/status/1635251865624674304

Ruan, Y., Durresi, A., & Alfantoukh, L. (2018). Using Twitter trust network for stock market analysis. Knowledge-Based Systems, 145, 207-218. https://www.sciencedirect.com/science/article/pii/S0950705118300248 DOI: https://doi.org/10.1016/j.knosys.2018.01.016

Schindler, F. (2013). Predictability and persistence of the price movements of the S&P/Case-Shiller house price indices. The Journal of Real Estate Finance and Economics, 46(1), 44-90. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2192128 DOI: https://doi.org/10.1007/s11146-011-9316-1

Shah, D., Isah, H., & Zulkernine, F. (2018, December 10–13). Predicting the effects of news sentiments on the stock market. In 2018 IEEE International Conference on Big Data, Seattle, WA, United States. https://doi.org/10.1109/BigData.2018.8621884 DOI: https://doi.org/10.1109/BigData.2018.8621884

Smith, Molly (2023; May 23) Fed Tracks Market Sentiment With New Index Built from 4.4 Million Tweets. Bloomberg. https://www.bloomberg.com/news/articles/2023-05-23/fed-index-built-from-4-4-million-tweets-predicts-size-ofhikes?embedded-checkout=true

Soroka, S. (2015; May 25). Why do we pay more attention to negative news than to positive news? British Politics and Policy at LSE [blog entry]. https://eprints.lse.ac.uk/62222/

Steinert, L., & Herff, C. (2018). Predicting altcoin returns using social media. Plos one, 13(12), article 0208119. https://doi.org/10.1371/journal.pone.0208119 DOI: https://doi.org/10.1371/journal.pone.0208119

Tikkanen, M. (2021). Predicting the FTSE All-Share index daily close-to-close price direction using sentiment analysis on tweets from UK. LUT University. https://lutpub.lut.fi/handle/10024/163481

Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3), 1139-1168. https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2007.01232.x DOI: https://doi.org/10.1111/j.1540-6261.2007.01232.x

Thaler, R. H. (2015). Misbehaving: The making of behavioral economics. W.W. Norton & Company. https://shorturl.at/adC17

Van Vo, L., & Le, H. T. T. (2023). From Hero to Zero: The Case of Silicon Valley Bank. Journal of Economics and Business, 127, article 106138. https://doi.org/10.1016/j.jeconbus.2023.106138 DOI: https://doi.org/10.1016/j.jeconbus.2023.106138

Yousaf, I., & Goodell, J. W. (2023). Responses of US equity market sectors to the Silicon Valley Bank implosion. Finance Research Letters, 55, article 103934. https://doi.org/10.1016/j.frl.2023.103934 DOI: https://doi.org/10.1016/j.frl.2023.103934