Por qué el índice de sentimiento neto debería ser una prioridad: un estudio de caso de la industria bancaria

Contenido principal del artículo

José Guadalupe Mendoza Macías
Román Alejandro Mendoza Urdiales
https://orcid.org/0000-0003-2888-156X

Resumen

El artículo analiza el impacto de los comentarios en redes sociales sobre el rendimiento de las acciones de los bancos en el mercado de valores de EE.UU. Se empleó inteligencia artificial para monitorear y extraer comentarios en tiempo real, y se utilizó el procesamiento de lenguaje natural para calcular el sentimiento de cada comentario. Los comentarios se clasificaron como positivos o negativos y se agregaron, por hora, para cada banco durante el período observado. Los resultados mostraron que tanto los comentarios positivos como los negativos tienen un efecto significativo en el rendimiento de las acciones, con un impacto asimétrico más pronunciado en el caso de los comentarios negativos. Este estudio contribuye a la comprensión de cómo la interacción en redes sociales puede influir en el valor de mercado de las empresas y destaca la importancia para las compañías que cotizan en bolsa de monitorear y gestionar la percepción en línea.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX Metrics

Detalles del artículo

Cómo citar
Mendoza Macías, J. G., & Mendoza Urdiales, R. A. (2024). Por qué el índice de sentimiento neto debería ser una prioridad: un estudio de caso de la industria bancaria. The Anáhuac Journal, 24(1), Págs. 272–293. https://doi.org/10.36105/theanahuacjour.2024v24n1.10
Sección
Artículos
Biografía del autor/a

José Guadalupe Mendoza Macías, Quantum Analytics, Sinaloa, México

José Mendoza is a distinguished professional in the technology and financial sectors, with over three decades of experience in leadership roles and systems development. He demonstrates exceptional skill in integrating technological solutions into complex business operations. Throughout his career, José has led a variety of innovative projects, excelling in the implementation of biometric systems and customer identification platforms that have transformed banking and retail operations in various countries. His commitment to continuous technological advancement and his ability to adapt new technologies to business demands highlight his strategic vision and executive competence. José contributes not only his vast technical knowledge but also his practical experience in process optimization and the application of strategic technologies, which is essential for companies in the technology and financial sectors aspiring to lead in a highly competitive market.

Román Alejandro Mendoza Urdiales, Quantum Analytics, Sinaloa, México

Román Mendoza is a leader in the artificial intelligence industry within consulting, working on developing solutions, strengthening capabilities, and generating knowledge in the field. His work focuses on delivering cutting-edge projects that integrate big data analytics and natural language processing to drive data-driven decision-making. With a solid track record of over 12 years in consulting projects, Román has specialized in implementing advanced technologies for operations research.

Citas

Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007 DOI: https://doi.org/10.1016/j.jocs.2010.12.007

Chung, M.H., & Chang, Y.K. (2024). Financial reporting complexity, investor sentiment, and stock prices. Finance Research Letters, 62(Part A), article 105026. https://doi.org/10.35692/07183992.13.1.8 DOI: https://doi.org/10.1016/j.frl.2024.105026

Colicev, A., & O’Connor, P. (2020). How Social Media Impacts Brand Value: The Mediating Role of Customer Satisfaction. Multidisciplinary Business Review, 12(1), 15-26. https://doi.org/10.35692/07183992.13.1.8 DOI: https://doi.org/10.35692/07183992.13.1.8

Croux, C., & Rousseeuw, P. J. (1992). Time-efficient algorithms for two highly robust estimators of scale. Computational Statistics, Physica-Verlag HD. DOI: https://doi.org/10.1007/978-3-662-26811-7_58

Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the Electronic Word-of-Mouth (eWOM) Research: A Systematic Review and Bibliometric Analysis. Journal of Business Research, 135, 758-773. https://doi.org/10.1016/j.jbusres.2021.07.015 DOI: https://doi.org/10.1016/j.jbusres.2021.07.015

Evans, D. M. (1859). The history of the commercial crisis, 1857-58, and the stock exchange panic of 1859. Groombridge and Sons.

Huber, P. J. (1973). The 1972 Wald Memorial Lectures: Robust regression: Asymptotics, conjectures, and Monte Carlo. The Annals of Statistics, 1(5), 799-821. https://www.jstor.org/stable/2958283 DOI: https://doi.org/10.1214/aos/1176342503

Huber, P. J. (1981). Robust statistics. John Wiley & Sons. DOI: https://doi.org/10.1002/0471725250

Kirtac, K., & Germano, G. (2024). Sentiment Trading with Large Language Models. Finance Research Letters, 62(Part B), article 105227. https://doi.org/10.1016/j.frl.2024.105227 DOI: https://doi.org/10.1016/j.frl.2024.105227

Li, J., & Yang, J. (2024). Financial shocks, investor sentiment, and heterogeneous firms’ output volatility: Evidence from credit asset securitization markets. Finance Research Letters, 60, article 104860. https://doi.org/10.1016/j.frl.2023.104860 DOI: https://doi.org/10.1016/j.frl.2023.104860

Mendoza-Urdiales, R. A., García-Medina, A., & Núñez-Mora, J. A. (2021). Measuring information flux between social media and stock prices with Transfer Entropy. PLOS ONE, 16(9), article 0257686. https://doi.org/10.1371/journal.pone.0257686 DOI: https://doi.org/10.1371/journal.pone.0257686

Mendoza-Urdiales, R. A., Núñez-Mora, J. A., Santillán-Salgado, R. J., & Valencia-Herrera, H. (2022). Twitter Sentiment Analysis and Influence on Stock Performance Using Transfer Entropy and EGARCH Methods. Entropy, 24(7), 874. https://doi.org/10.3390/e24070874 DOI: https://doi.org/10.3390/e24070874

Núñez-Mora, J. A., & Mendoza-Urdiales, R. A. (2023). Social sentiment and impact in US equity market: an automated approach. Social Network Analysis and Mining, 13, 111. https://doi.org/10.1007/s13278-023-01116-6 DOI: https://doi.org/10.1007/s13278-023-01116-6

Plourde, A. (2023). Criticizing companies via social media and digital platforms: an alternative forum of justice for consumers? Option consommateurs. CID: 20.500.12592/m8xnp1. https://canadacommons.ca/artifacts/8246598/criticizing-companies-via-socialmedia-and-digital-platforms/9163537/

Reichheld, F. (2011). The Ultimate Question 2.0 (revised and expanded edition): How Net Promoter Companies Thrive in a Customer-Driven World. Harvard Business Review Press.

Tetlock, P. (2007). Giving content to Investor Sentiment: The role of Media in the Stock Market. The Journal of Finance, 62(3), 1139-1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x DOI: https://doi.org/10.1111/j.1540-6261.2007.01232.x

Thaler, Richard H. (2017). The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2017. Nobel Prize 2017. https://www.nobelprize.org/prizes/economic-sciences/2017/thaler/facts/

Van Velthoven, S.T.M. (2014). Sentiment analysis on social media to predict Net Promoter Score (master’s thesis), Eindhoven University of Technology Research. https://pure.tue.nl/ws/portalfiles/portal/46988096/783003-1.pdf