Prioritizing the Net Sentiment Score: A Banking Industry Case Study
Main Article Content
Abstract
This study analyzes the impact of social media comments on the stock performance of banks registered on the United States stock market. We use artificial intelligence to monitor and extract comments in real time, together with natural language processing, to identify the sentiment of each comment. Comments were classified as positive or negative and were added by the hour for each bank during the observed period. Our results showed that both positive and negative comments have a significant effect on the stock performance, with negative comments having a more pronounced, asymmetrical impact. This study contributes to understanding how social media interactions influence the market value of companies, highlighting the importance of monitoring and managing the online perception of the companies listed on the stock market.
Downloads
PLUMX Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.
References
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007 DOI: https://doi.org/10.1016/j.jocs.2010.12.007
Chung, M.H., & Chang, Y.K. (2024). Financial reporting complexity, investor sentiment, and stock prices. Finance Research Letters, 62(Part A), article 105026. https://doi.org/10.35692/07183992.13.1.8 DOI: https://doi.org/10.1016/j.frl.2024.105026
Colicev, A., & O’Connor, P. (2020). How Social Media Impacts Brand Value: The Mediating Role of Customer Satisfaction. Multidisciplinary Business Review, 12(1), 15-26. https://doi.org/10.35692/07183992.13.1.8 DOI: https://doi.org/10.35692/07183992.13.1.8
Croux, C., & Rousseeuw, P. J. (1992). Time-efficient algorithms for two highly robust estimators of scale. Computational Statistics, Physica-Verlag HD. DOI: https://doi.org/10.1007/978-3-662-26811-7_58
Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the Electronic Word-of-Mouth (eWOM) Research: A Systematic Review and Bibliometric Analysis. Journal of Business Research, 135, 758-773. https://doi.org/10.1016/j.jbusres.2021.07.015 DOI: https://doi.org/10.1016/j.jbusres.2021.07.015
Evans, D. M. (1859). The history of the commercial crisis, 1857-58, and the stock exchange panic of 1859. Groombridge and Sons.
Huber, P. J. (1973). The 1972 Wald Memorial Lectures: Robust regression: Asymptotics, conjectures, and Monte Carlo. The Annals of Statistics, 1(5), 799-821. https://www.jstor.org/stable/2958283 DOI: https://doi.org/10.1214/aos/1176342503
Huber, P. J. (1981). Robust statistics. John Wiley & Sons. DOI: https://doi.org/10.1002/0471725250
Kirtac, K., & Germano, G. (2024). Sentiment Trading with Large Language Models. Finance Research Letters, 62(Part B), article 105227. https://doi.org/10.1016/j.frl.2024.105227 DOI: https://doi.org/10.1016/j.frl.2024.105227
Li, J., & Yang, J. (2024). Financial shocks, investor sentiment, and heterogeneous firms’ output volatility: Evidence from credit asset securitization markets. Finance Research Letters, 60, article 104860. https://doi.org/10.1016/j.frl.2023.104860 DOI: https://doi.org/10.1016/j.frl.2023.104860
Mendoza-Urdiales, R. A., García-Medina, A., & Núñez-Mora, J. A. (2021). Measuring information flux between social media and stock prices with Transfer Entropy. PLOS ONE, 16(9), article 0257686. https://doi.org/10.1371/journal.pone.0257686 DOI: https://doi.org/10.1371/journal.pone.0257686
Mendoza-Urdiales, R. A., Núñez-Mora, J. A., Santillán-Salgado, R. J., & Valencia-Herrera, H. (2022). Twitter Sentiment Analysis and Influence on Stock Performance Using Transfer Entropy and EGARCH Methods. Entropy, 24(7), 874. https://doi.org/10.3390/e24070874 DOI: https://doi.org/10.3390/e24070874
Núñez-Mora, J. A., & Mendoza-Urdiales, R. A. (2023). Social sentiment and impact in US equity market: an automated approach. Social Network Analysis and Mining, 13, 111. https://doi.org/10.1007/s13278-023-01116-6 DOI: https://doi.org/10.1007/s13278-023-01116-6
Plourde, A. (2023). Criticizing companies via social media and digital platforms: an alternative forum of justice for consumers? Option consommateurs. CID: 20.500.12592/m8xnp1. https://canadacommons.ca/artifacts/8246598/criticizing-companies-via-socialmedia-and-digital-platforms/9163537/
Reichheld, F. (2011). The Ultimate Question 2.0 (revised and expanded edition): How Net Promoter Companies Thrive in a Customer-Driven World. Harvard Business Review Press.
Tetlock, P. (2007). Giving content to Investor Sentiment: The role of Media in the Stock Market. The Journal of Finance, 62(3), 1139-1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x DOI: https://doi.org/10.1111/j.1540-6261.2007.01232.x
Thaler, Richard H. (2017). The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2017. Nobel Prize 2017. https://www.nobelprize.org/prizes/economic-sciences/2017/thaler/facts/
Van Velthoven, S.T.M. (2014). Sentiment analysis on social media to predict Net Promoter Score (master’s thesis), Eindhoven University of Technology Research. https://pure.tue.nl/ws/portalfiles/portal/46988096/783003-1.pdf